[1] SURESH P, THAYAPARAN T, OBULESU T, et al. Extracting micro-doppler radar signatures from rotating targets using fourier-bessel transform and time-frequency analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3204-3210.
[2] LUO Y, ZHANG Q, YUAN N, et al. Three-dimensional precession feature extraction of space targets[J]. IEEE Transactions on Aerospace and Electronic System, 2014, 50(2):1313-1329.
[3] 肖金国, 杜兰, 韩勋, 等. 基于参数化时频分析的进动锥裙目标瞬时微多普勒频率提取方法[J]. 电子与信息学报, 2016, 38(1):90-96. XIAO J G, DU L, HAN X, et al. Micro-Doppler frequency extraction for cone-skirt shaped target with precession based on parameterized time-frequency analysis[J]. Journal of Electronics and Information Technology, 2016, 38(1):90-96 (in Chinese).
[4] 毕严先, 魏少明, 王俊, 等. 基于最小二乘估计的InISAR空间目标三维成像方法[J]. 电子与信息学报, 2016, 38(5):1079-1084. BI Y X, WEI S M, WANG J, et al. Interferometric ISAR imaging for 3-D geometry of uniformly rotating targets based on least squares estimation method[J]. Journal of Electronics & Information Technology, 2016, 38(5):1079-1084 (in Chinese).
[5] 尹建凤, 李道京, 王爱明, 等. 基于星载毫米波顺规-交轨InISAR的空间运动目标三维成像技术研究[J]. 宇航学报, 2013, 34(2):237-245. YIN J F, LI D J, WANG A M, et al. Three-dimensional imaging technique of space moving space target based on spaceborne along-cross track millimeter-wave In-ISAR[J]. Journal of Astronautics, 2013, 34(2):237-245 (in Chinese).
[6] 付耀文, 李亚楠, 黎湘. 基于MFT的非匀速转动目标干涉ISAR三维成像方法[J]. 宇航学报, 2012, 33(6):769-775. FU Y W, LI Y N, LI X. A 3-D InISAR imaging method for non-uniformly rotating target based on match Fourier transform[J]. Journal of Astronautics, 2012, 33(6):769-775 (in Chinese).
[7] 陈永安, 罗迎, 王恺, 等. 多天线干涉处理的窄带雷达空间旋转目标三维成像[J]. 空军工程大学学报(自然科学版), 2016, 17(4):46-51. CHEN Y A, LUO Y, WANG K, et al. Three dimensional imaging for space target based on multi-antenna interferometric processing[J]. Journal of Air Force Engineering University(Natural Science Edition), 2016, 17(4):46-51 (in Chinese).
[8] XING M, WANG Q, WANG G, et al. A matched-filter-bank-based 3-D imaging algorithm for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7):2106-2113.
[9] BAI X R, XING M D, ZHOU F, et al. High-resolution three-dimensional imaging of spinning space debris[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4):2352-2362.
[10] BAI X R, XING M D, ZHOU F, et al. Scaling the 3-D image of spinning space debris via bistatic inverse synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3):430-434.
[11] 邹小海, 艾小锋, 李永祯, 等. 自旋尾翼弹头的双基地微多普勒研究[J]. 电子与信息学报, 2012, 34(9):2122-2127. ZOU X H, AI X F, LI Y Z, et al. Bistatic Micro-Doppler of the Spinning Warhead with Fins[J]. Journal of Electronics and Information Technology, 2012, 34(9):2122-2127 (in Chinese).
[12] AI X F, HUANG Y, ZHAO F, et al. Imaging of spinning targets via narrow-band T/R-R bistatic radars[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2):362-366.
[13] CHEN Q Q, XU G, ZHANG L, et al. Three-dimensional interferometric inverse synthetic aperture radar imaging with limited pulses by exploiting joint sparsity[J]. IET Radar Sonar Navigation, 2015, 9(6):692-701.
[14] MAHDI N, MOHAMMAD H B. A novel model for three-dimensional imaging using interferometric ISAR in any curved target flight path[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3236-3245.
[15] TIAN B, ZOU J W, XU S Y, et al. Squint model interferometric ISAR imaging based on respective reference range selection and squint iteration improvement[J]. IET Radar Sonar Navigation, 2015, 9(9):1366-1375.
[16] 张群, 罗迎. 雷达目标微多普勒效应[M]. 北京:国防工业出版社, 2013:3-42. ZHANG Q, LUO Y. Micro-doppler effect of radar targets[M]. Beijing:National Defense Industry Press, 2013:3-42 (in Chinese).
[17] 罗迎, 柏又青, 张群, 等. 弹道目标平动补偿与微多普勒特征提取方法[J]. 电子与信息学报, 2012, 34(3):602-608. LUO Y, BAI Y Q, ZHANG Q, et al. Translation motion compensation and micro-Doppler feature extraction of ballistic targets[J]. Journal of Electronics and Information Technology, 2012, 34(3):602-608 (in Chinese).
[18] 贺思三, 赵会宁, 张永顺. 基于延迟共轭相乘的弹道目标平动补偿[J]. 雷达学报, 2014, 3(5):505-510. HE S S, ZHAO H N, ZHANG Y S. Translational motion compensation for ballistic targets based on delayed conjugated multiplication[J]. Journal of Radars, 2014, 3(5):505-510 (in Chinese).
[19] 杨有春, 童宁宁, 冯存前, 等. 弹道目标中端平动补偿与微多普勒提取[J]. 宇航学报, 2011, 32(10):2235-2241. YANG Y C, TONG N N, FENF C Q, et al. Translation compensation and micro-doppler extraction of ballistic targets in midcourse[J]. Journal of Astronautics, 2011, 32(10):2235-2241 (in Chinese).
[20] 黄大荣, 郭新荣, 张磊, 等. 稀疏孔径ISAR机动目标成像与相位补偿方法[J]. 航空学报, 2014, 35(7):2019-2030. HUANG D R, GUO X R, ZHANG L, et al. ISAR phase compensation and imaging of maneuvering target with sparse apertures[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):2019-2030 (in Chinese).
[21] GONZALEZ R C, WOODS R E. Digital image processing[M]. 2nd ed. Upper Saddle River, NJ:Prentice-Hall, 2002:543-544.
[22] ZHANG Q, YEO T S, TAN H S, et al. Imaging of a moving target with rotating parts based on the Hough transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):291-299. |