ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Dynamic modeling and simulation of slack rope based on ANCF
Received date: 2016-07-05
Revised date: 2016-10-28
Online published: 2016-11-14
Supported by
National Basic Research Program of China (2013CB733004); Program of Shanghai Subject Chief Scientist (14XD1423300)
Traditional absolute nodal coordinate formulation (ANCF) rope model is built based on beam element, and cannot reflect the incompressible and slack properties of fiber ropes. Considering the initial slackness of fiber ropes, the nonlinear axial stress-strain relationship of the rope is presented. The axial force of the rope is close to zero in the slack state, while the rope shows linear elastic property in the tense state. On this basis, the dynamic model of the slack rope is derived by applying ANCF. The traditional rope model and slack rope model are compared with each other through static and dynamic simulations, and the results indicate that compared with the traditional rope, the slack rope has greater deformation under gravity and different concentrated loads. According to the dynamic response of the rope after removal of the concentrated load, it is found that the traditional rope is always in tense state in the vibration process and the vibration of each point is synchronous; however, the slack rope keeps shifting in tense and slack states and there exists phase difference between each point, which can better reflect the dynamic characteristics of the rope in the slack state.
Key words: ANCF; fiber rope; slack; incompressible; dynamics
ANCF ZHANG Yue , WEI Cheng , ZHAO Yang , TAN Chunlin , XU Dafu . Dynamic modeling and simulation of slack rope based on ANCF[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(4) : 220586 -220586 . DOI: 10.7527/S1000-6893.2016.0281
[1] 金栋平, 文浩, 胡海岩. 绳索系统的建模、动力学和控制[J]. 力学进展, 2004, 34(3):304-313. JIN D P, WEN H, HU H Y. Modeling, dynamics and control of cable systems[J]. Advances in Mechanics, 2004, 34(3):304-313 (in Chinese).
[2] 周鲁豫. UHMWPE纤维绳索的编织工艺和力学性能研究[D]. 青岛:青岛大学, 2013:1-10. ZHOU L Y. Study on the knitting process and mechanical properties of UHMWPE fiber rope[D]. Qingdao:Qing-dao University, 2013:1-10 (in Chinese).
[3] KAMMAN J W, HUSTON R L. Multibody dynamics modeling of variable length cable systems[J]. Multibody System Dynamics, 2001, 5(3):211-221.
[4] 陈钦. 空间绳网系统设计与动力学研究[D]. 长沙:国防科学技术大学, 2010:48-49. CHEN Q. Design and dynamics of an orbital net-capture system[D]. Changsha:National University of Defense Technology, 2010:48-49 (in Chinese).
[5] HU X Z, LIU S J. Numerical simulation of deepwater deployment for offshore structures with deploying cables[J]. Journal of Central South University, 2015, 22(3):922-930.
[6] CONNELLY J D, HUSTON R L. The dynamics of flexible multibody systems:A finite segment approach-I. Theoretical aspects[J]. Computers & Structures, 1994, 50(2):255-258.
[7] CONNELLY J D, HUSTON R L. The dynamics of flexible multibody systems:A finite segment approach-Ⅱ. Example problems[J]. Computers & Structures, 1994, 50(2):259-262.
[8] 潘冬, 张越, 魏承, 等. 空间大型末端执行器绳索捕获动力学建模与仿真[J]. 振动与冲击, 2015, 34(1):74-79. PAN D, ZHANG Y, WEI C, et al. Dynamic modeling and simulation on rope capturing by space large end effector[J]. Journal of Vibration and Shock, 2015, 34(1):74-79 (in Chinese).
[9] SHABANA A A. An absolute nodal coordinate formulation for the large rotation and large deformation analysis of flexible bodies[D]. Chicago:University of Illinois, 1996.
[10] SHABANA A A. Definition of ANCF finite elements[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10(5):054506.
[11] 田强. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用[D]. 武汉:华中科技大学, 2009:2-7. TIAN Q. Flexible multibody dynamics research and application based on the absolute nodal coordinate method[D]. Wuhan:Huazhong University of Science and Technology, 2009:2-7 (in Chinese).
[12] TANG J L, REN G X, ZHU W D, et al. Dynamics of variable-length tethers with application to tethered satellite deployment[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8):3411-3424.
[13] 于洋, 宝音贺西, 李俊峰. 空间飞网抛射展开动力学建模与仿真[J]. 宇航学报, 2010, 31(5):1289-1296. YU Y, BAOYIN H X, LI J F. Modeling and simulation of projecting deployment dynamics of space webs[J]. Journal of Astronautics, 2010, 31(5):1289-1296 (in Chinese).
[14] 张江. 空间绳网捕获过程碰撞动力学研究[D]. 哈尔滨:哈尔滨工业大学, 2015:19-31. ZHANG J. Contact dynamics of space net on capturing target[D]. Harbin:Harbin Institute of Technology, 2015:19-31 (in Chinese).
[15] ZHANG Y, WEI C, PAN D, et al. A dynamical approach to space capturing procedure using flexible cables[J]. Aircraft Engineering and Aerospace Technology, 2016, 88(1):53-65.
[16] LEE J H, PARK T W. Development of a three-dimensional catenary model using cable elements based on absolute nodal coordinate formulation[J]. Journal of Mechanical Science and Technology, 2012, 26(12):3933-3941.
[17] TUR M, GARCÍA E, BAEZA L, et al. A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary[J]. Engineering Structures, 2014, 71(1):234-243.
[18] SHABANA A A, YAKOUB R Y. Three dimensional absolute nodal coordinate formulation for beam elements:Theory[J]. Journal of Mechanical Design, 2001, 123(4):606-613.
[19] YAKOUB R Y, SHABANA A A. Three dimensional absolute nodal coordinate formulation for beam elements:Implementation and applications[J]. Journal of Mechanical Design, 2001, 123(4):614-621.
[20] GERSTMAYR J, SHABANA A A. Analysis of thin beams and cables using the absolute nodal co-ordinate formulation[J]. Nonlinear Dynamics, 2006, 45(1-2):109-130.
[21] FUJⅡ F, NOGUCHI H, ODA K. Flexible and incompressive goal nets in soccer[M]. Dordrecht:Springer, 2006:1903-1909.
[22] FUJIWARA J, SEGAWA S, ODA K, et al. Static loading tests and a computational model of a flexible net[C]//Extended Abstracts of International Symposium on New Olympics New Shell and Spatial Structures. Madrid:The International Association for Shell and Spatial Structure, 2006.
[23] 于洋, 宝音贺西, 李俊峰. 空间绳索系统的动力学建模方法[C]//北京力学会第十六届学术年会论文集. 北京:北京力学会, 2010. YU Y, BAOYIN H X, LI J F. Dynamic modeling method of space tether system[C]//16th Academic Annual Conference of Beijing Society of Theoretical and Applied Mechanics. Beijing:Beijing Society of Theoretical and Applied Mechanics, 2010 (in Chinese).
[24] GARCÍD-VALLEJO D, VALVERDE J, DOMÍNGUEZ J. An internal damping model for the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2005, 42(4):347-369.
[25] SHABANA A A. Computational continuum mechanics[M]. Cambridge:Cambridge University Press, 2011:240-248.
/
〈 | 〉 |