[1] 金栋平, 文浩, 胡海岩. 绳索系统的建模、动力学和控制[J]. 力学进展, 2004, 34(3):304-313. JIN D P, WEN H, HU H Y. Modeling, dynamics and control of cable systems[J]. Advances in Mechanics, 2004, 34(3):304-313 (in Chinese).
[2] 周鲁豫. UHMWPE纤维绳索的编织工艺和力学性能研究[D]. 青岛:青岛大学, 2013:1-10. ZHOU L Y. Study on the knitting process and mechanical properties of UHMWPE fiber rope[D]. Qingdao:Qing-dao University, 2013:1-10 (in Chinese).
[3] KAMMAN J W, HUSTON R L. Multibody dynamics modeling of variable length cable systems[J]. Multibody System Dynamics, 2001, 5(3):211-221.
[4] 陈钦. 空间绳网系统设计与动力学研究[D]. 长沙:国防科学技术大学, 2010:48-49. CHEN Q. Design and dynamics of an orbital net-capture system[D]. Changsha:National University of Defense Technology, 2010:48-49 (in Chinese).
[5] HU X Z, LIU S J. Numerical simulation of deepwater deployment for offshore structures with deploying cables[J]. Journal of Central South University, 2015, 22(3):922-930.
[6] CONNELLY J D, HUSTON R L. The dynamics of flexible multibody systems:A finite segment approach-I. Theoretical aspects[J]. Computers & Structures, 1994, 50(2):255-258.
[7] CONNELLY J D, HUSTON R L. The dynamics of flexible multibody systems:A finite segment approach-Ⅱ. Example problems[J]. Computers & Structures, 1994, 50(2):259-262.
[8] 潘冬, 张越, 魏承, 等. 空间大型末端执行器绳索捕获动力学建模与仿真[J]. 振动与冲击, 2015, 34(1):74-79. PAN D, ZHANG Y, WEI C, et al. Dynamic modeling and simulation on rope capturing by space large end effector[J]. Journal of Vibration and Shock, 2015, 34(1):74-79 (in Chinese).
[9] SHABANA A A. An absolute nodal coordinate formulation for the large rotation and large deformation analysis of flexible bodies[D]. Chicago:University of Illinois, 1996.
[10] SHABANA A A. Definition of ANCF finite elements[J]. Journal of Computational and Nonlinear Dynamics, 2015, 10(5):054506.
[11] 田强. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用[D]. 武汉:华中科技大学, 2009:2-7. TIAN Q. Flexible multibody dynamics research and application based on the absolute nodal coordinate method[D]. Wuhan:Huazhong University of Science and Technology, 2009:2-7 (in Chinese).
[12] TANG J L, REN G X, ZHU W D, et al. Dynamics of variable-length tethers with application to tethered satellite deployment[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(8):3411-3424.
[13] 于洋, 宝音贺西, 李俊峰. 空间飞网抛射展开动力学建模与仿真[J]. 宇航学报, 2010, 31(5):1289-1296. YU Y, BAOYIN H X, LI J F. Modeling and simulation of projecting deployment dynamics of space webs[J]. Journal of Astronautics, 2010, 31(5):1289-1296 (in Chinese).
[14] 张江. 空间绳网捕获过程碰撞动力学研究[D]. 哈尔滨:哈尔滨工业大学, 2015:19-31. ZHANG J. Contact dynamics of space net on capturing target[D]. Harbin:Harbin Institute of Technology, 2015:19-31 (in Chinese).
[15] ZHANG Y, WEI C, PAN D, et al. A dynamical approach to space capturing procedure using flexible cables[J]. Aircraft Engineering and Aerospace Technology, 2016, 88(1):53-65.
[16] LEE J H, PARK T W. Development of a three-dimensional catenary model using cable elements based on absolute nodal coordinate formulation[J]. Journal of Mechanical Science and Technology, 2012, 26(12):3933-3941.
[17] TUR M, GARCÍA E, BAEZA L, et al. A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary[J]. Engineering Structures, 2014, 71(1):234-243.
[18] SHABANA A A, YAKOUB R Y. Three dimensional absolute nodal coordinate formulation for beam elements:Theory[J]. Journal of Mechanical Design, 2001, 123(4):606-613.
[19] YAKOUB R Y, SHABANA A A. Three dimensional absolute nodal coordinate formulation for beam elements:Implementation and applications[J]. Journal of Mechanical Design, 2001, 123(4):614-621.
[20] GERSTMAYR J, SHABANA A A. Analysis of thin beams and cables using the absolute nodal co-ordinate formulation[J]. Nonlinear Dynamics, 2006, 45(1-2):109-130.
[21] FUJⅡ F, NOGUCHI H, ODA K. Flexible and incompressive goal nets in soccer[M]. Dordrecht:Springer, 2006:1903-1909.
[22] FUJIWARA J, SEGAWA S, ODA K, et al. Static loading tests and a computational model of a flexible net[C]//Extended Abstracts of International Symposium on New Olympics New Shell and Spatial Structures. Madrid:The International Association for Shell and Spatial Structure, 2006.
[23] 于洋, 宝音贺西, 李俊峰. 空间绳索系统的动力学建模方法[C]//北京力学会第十六届学术年会论文集. 北京:北京力学会, 2010. YU Y, BAOYIN H X, LI J F. Dynamic modeling method of space tether system[C]//16th Academic Annual Conference of Beijing Society of Theoretical and Applied Mechanics. Beijing:Beijing Society of Theoretical and Applied Mechanics, 2010 (in Chinese).
[24] GARCÍD-VALLEJO D, VALVERDE J, DOMÍNGUEZ J. An internal damping model for the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2005, 42(4):347-369.
[25] SHABANA A A. Computational continuum mechanics[M]. Cambridge:Cambridge University Press, 2011:240-248. |