Solid Mechanics and Vehicle Conceptual Design

Lifetime prediction for missile components based on multiple parameters correlative degrading with random shocks of environmental stresses

  • WANG Haowei ,
  • TENG Ke'nan ,
  • LI Junliang
Expand
  • Naval Aeronautical and Astronautical University, Yantai 264001, China

Received date: 2016-01-08

  Revised date: 2016-06-14

  Online published: 2016-06-20

Supported by

National Natural Science Foundation of China (51605487); China Postdoctoral Science Foundation (2016M592965); Shandong Province Natural Science Foundation (ZR2016FQ03)

Abstract

In order to solve the problem of predicting the lifetime of a type of missile component, a prediction method based on multiple parameters correlative degrading with random shocks is proposed. The product has two failure modes which are degradation failure and traumatic failure. Some stochastic processes, including Wiener, Gamma, and Inverse Gaussian, are adopted to fit the degradation data of performance indexes, and Copula functions are then utilized to model the dependent degradation failure. The shocks of random environmental stresses are used to explain the mechanism of traumatic failure, and a non-homogeneous Poisson process is applied to model the traumatic failure. Thus, a lifetime prediction model is set up based on competing risks of degradation failure and traumatic failure. An application example validates that the proposed method, which can model the failure mechanism of the missile component, possesses higher prediction accuracy than traditional methods, and are applicable in engineering.

Cite this article

WANG Haowei , TENG Ke'nan , LI Junliang . Lifetime prediction for missile components based on multiple parameters correlative degrading with random shocks of environmental stresses[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(11) : 3404 -3412 . DOI: 10.7527/S1000-6893.2016.0192

References

[1] 刘震宇, 马小兵, 赵宇. 非恒定温度场合弹上性能退化型部件贮存可靠性评估[J]. 航空学报, 2012, 33(9):1671-1678. LIU Z Y, MA X B, ZHAO Y. Storage reliability assessment for missile component with degradation failure mode in a temperature varying environment[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1671-1678(in Chinese).
[2] 赵建忠, 叶文, 张磊. 基于数据融合和改进新陈代谢不等间距GM(1,1)模型的导弹装备故障预测[J]. 兵工学报, 2014, 35(10):1689-1695. ZHAO J Z, YE W, ZHANG L. Failure prediction of missile equipment based on data fusion and AMUGM(1,1) model[J]. Acta Armamentarii, 2014, 35(10):1689-1695(in Chinese).
[3] 徐廷学. 基于定期检测的导弹贮存可靠性研究[J]. 弹箭与制导学报, 2008, 28(1):248-250. XU T X. Study on storage reliability based on periodical test for missile[J]. Journal of Projectiles, Rockets, Missile and Guidance, 2008, 28(1):248-250(in Chinese).
[4] 王浩伟, 徐廷学, 赵建忠. 融合加速退化和现场实测退化数据的剩余寿命预测方法[J]. 航空学报, 2014, 35(12):3350-3357. WANG H W, XU T X, ZHAO J Z. Residual life prediction method fusing accelerated degradation and field degradation data[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3350-3357(in Chinese).
[5] LOUTAS T H, ROULIAS D, GEORGOULAS G. Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic e-support vectors regression[J]. IEEE Transactions on Reliability, 2013, 62(4):821-832.
[6] LIAO L X. Discovering prognostic features using genetic programming in remaining useful life prediction[J]. IEEE Transactions on Industrial Electrics, 2014, 61(5):2464-2472.
[7] SI X S, WANG W B, HU C H, et al. Remaining useful life estimation-A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1):1-14.
[8] 张小丽, 陈雪峰, 李兵, 等. 机械重大装备寿命预测综述[J]. 机械工程学报, 2011, 47(11):100-116. ZHANG X L, CHEN X F, LI B, et al. Review of life prediction for mechanical major equipments[J]. Journal of Mechanical Engineering, 2011, 47(11):100-116(in Chinese).
[9] HUANG W, ASKIN R G. Reliability analysis of electronic devices with multiple competing failure modes involving performance aging degradation[J]. Quality and Reliability Engineering International, 2003, 19(3):241-254.
[10] 张祥坡, 尚建忠, 陈循, 等. 三参数Weibull分布竞争失效场合变应力加速寿命试验统计分析[J]. 兵工学报, 2013, 34(12):1603-1610. ZHANG X P, SHANG J Z, CHEN X, et al. Statistical inference of varying-stress accelerated life test with competing failures based on three-parameter Weibull distribution[J]. Acta Armamentarii, 2013, 34(12):1603-1610(in Chinese).
[11] 罗湘勇, 黄小凯. 基于多机理竞争退化的导弹贮存可靠性分析[J]. 北京航空航天大学学报, 2013, 39(5):701-705. LUO X Y, HUANG X K. Storage reliability analysis of missile based on multi-mechanism competition degradation model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013,39(5):701-705(in Chinese).
[12] LUO W, ZHANG C H, CHEN X, et al. Accelerated reliability demonstration under competing failure modes[J]. Reliability Engineering and System Safety, 2015, 136:75-84.
[13] PAN Z Q, BALAKRISHNAN N, SUN Q, et al. Bivariate degradation analysis of products based on Wiener processes and copulas[J]. Journal of Statistical Computation and Simulation, 2013, 83(7):1316-1329.
[14] WANG X L, BALAKRISHNAN N, GUO B, et al. Residual life estimation based on bivariate non-stationary gamma degradation process[J]. Journal of Statistical Computation and Simulation, 2015, 85(2):405-421.
[15] YE Z S, TANG L C, XU H Y. A distribution-based systems reliability model under extreme shocks and natural degradation[J]. IEEE Transactions on Reliability, 2011, 60(1):246-256.
[16] ZHANG X P, SHANG J Z, CHEN X, et al. Statistical inference of accelerated life testing with dependent competing failures based on copula theory[J]. IEEE Transactions on Reliability, 2014, 63(3):764-778.
[17] 王华伟, 高军, 吴海桥. 基于竞争失效的航空发动机剩余寿命预测[J]. 机械工程学报, 2014, 50(6):197-204. WANG H W, GAO J, WU H Q. Residual remaining life prediction based on competing failures for aircraft engines[J]. Journal of Mechanical Engineering, 2014, 50(6):197-204(in Chinese).
[18] 王浩伟, 奚文骏, 冯玉光. 基于退化失效与突发失效竞争的导弹剩余寿命预测[J]. 航空学报, 2016, 37(4):1240-1248. WANG H W, XI W J, FENG Y G. Reliability model and evaluation method of products in competing failure modes[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1240-1248(in Chinese).
[19] JIANG L, FENG Q, COIT D W. Reliability and maintenance modeling for dependent competing failure processes with shifting failure thresholds[J]. IEEE Transactions on Reliability, 2012, 61(4):932-948.
[20] WANG Y, PHAM H. Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[J]. IEEE Transactions on Reliability, 2012, 61(1):13-22.
[21] SI X S, WANG W B, HU C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2):219-237.
[22] WANG X, XU D. An inverse Gaussian process model for degradation data[J]. Technometrics, 2010, 52(2):188-197.
[23] WANG H W, XU T X, MI Q L. Lifetime prediction based on Gamma processes from accelerated degradation data[J]. Chinese Journal of Aeronautics, 2015, 28(1):172-179.
[24] PAN Z Q, BALAKRISHNAN N. Reliability modeling of degradation of products with multiple performance characteristics based on Gamma processes[J]. Reliability Engineering & System Safety, 2011, 96(8):949-957.
[25] EFRON B. Better bootstrap confidence intervals[J]. Journal of American Statistical Association, 1987, 82(397):171-185.
[26] MARKS C E, GLEN A G, ROBINSON M W, et al. Applying bootstrap methods to system reliability[J]. The American Statistician, 2014, 68(3):174-180.

Outlines

/