Material Engineering and Mechanical Manufacturing

Integral robust based asymptotic tracking control of electro-hydraulic load simulator

  • YUE Xin ,
  • YAO Jianyong
Expand
  • School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2016-03-28

  Revised date: 2016-05-16

  Online published: 2016-05-30

Supported by

National Natural Science Foundation of China (51305203); China Postdoctoral Science Foundation (2015T80553); Jiangsu Planned Projects for Postdoctora l Research Funds (1302002A)

Abstract

Electro-hydraulic load simulator (EHLS) is a typical electro-hydraulic force system, in which various nonlinear properties and modeling uncertainties (especially nonlinear frictions) exist. With the higher demand for the tracking performance of electro-hydraulic force system, it is difficult for the traditional linear control strategy to meet the high-performance demand of loading system, and thus the advanced nonlinear control strategy is required urgently. To overcome the above problems, a nonlinear mathematic model, synthesized with a continuous differentiable friction model, is established. Meanwhile, a new control method, named as a robust integral of the sign of the error, is also designed based on Lyapunov stability theory. The control strategy proposed can eliminate the influence of the uncertainties of the model and guarantee asymptotic output tracking performance under the motion disturbance of aircraft actuator. Comparative experimental results are obtained to verify the high-performance of the proposed control strategy.

Cite this article

YUE Xin , YAO Jianyong . Integral robust based asymptotic tracking control of electro-hydraulic load simulator[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(2) : 420269 -420278 . DOI: 10.7527/S1000-6893.2016.0152

References

[1] JIAO Z X, GAO J X, HUA Q, et al. The velocity synchronizing control on the electro-hydraulic load simulator[J]. Chinese Journal of Aeronautics, 2004, 17(1):39-46.
[2] 王鑫, 孙力, 闫杰. 应用复合前馈提高加载系统性能的实验研究[J]. 系统仿真学报, 2004, 16(7):1539-1541. WANG X, SUN L, YAN J. Experimental research on improving loading performance by compounding feed-forward control[J]. Journal of System Simulations, 2004, 16(7):1539-1541(in Chinese).
[3] YAO J Y, SHANG Y X, JIAO Z X. The velocity feed-forward and compensation on eliminating extraneous torque of electro-hydraulic load simulator[C]//Proceedings of the 7th International Conference on Fluid Power Transmission and Control, 2009:462-465.
[4] YAO J Y, JIAO Z X, SHANG Y X, et al. Adaptive nonlinear optimal compensation control for electro-hydraulic load simulator[J]. Chinese Journal of Aeronautics, 2010, 23(6):720-733.
[5] NAM Y, SUNG K H. Force control system design for aerodynamic load simulator[J]. Control Engineering Practice, 2002, 10(5):549-558.
[6] NAM Y. QFT force loop design for the aerodynamic load simulator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4):1384-1392.
[7] TRUONG D Q, AHN K K. Self-tuning quantitative feed-back theory for parallel force/position control of electro-hydrostatic actuators[J]. Journal of Systems and Control Engineering, 2009, 223(14):537-556.
[8] AHN K K, TRUONG D Q. Self-tuning quantitative feed-back theory for force control of an electro-hydraulic test machine[J]. Control Engineering Practice, 2009, 17(11):1291-1306.
[9] AHN K K, THAI N H, TRUONG D Q. Robust force control of a hybrid actuator using quantitative feedback theory[J]. Journal of Mechanical Science and Technology, 2007, 21(12):2048-2058.
[10] AHN K K, TRUONG D Q, THANH T Q, et al. Online self-tuning fuzzy proportional-integral-derivative control for hydraulic load simulator[J]. Journal of Systems and Control Engineering, 2008, 222(2):81-95.
[11] TRUONG D Q, AHN K K. Force control for hydraulic load simulator using self-turning grey predictor-fuzzy PID[J]. Mechatronics, 2009, 19(2):233-246.
[12] 张彪, 赵克定, 孙丰迎. 电液负载模拟器的神经网络参数辨识[J]. 航空学报, 2009, 30(2):374-379. ZHANG B, ZHAO K D, SUN F Y. Neural network parameter identification of electro-hydraulic load simulator[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2):374-379(in Chinese).
[13] 王新民, 刘卫国. 电液伺服加载的神经网络内部反馈控制[J]. 航空学报, 2007, 28(3):690-694. WANG X M, LIU W G. Neural network internal feed-back control for electro-hydraulic servo loading[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3):690-694(in Chinese).
[14] MARE F C. Dynamic loading systems for ground testing of high speed aerospace actuators[J]. Aircraft Engineering and Aerospace Technology, 2006, 78(4):275-282.
[15] MERRITT H E. Hydraulic control systems[M]. New York:Wiley, 1967:56-89.
[16] YAO B, BU F P, REEDY J, et al. Adaptive robust motion control of single-rod hydraulic actuators:Theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(1):79-91.
[17] XU L, YAO B. Adaptive robust precision motion control of linear motors with negligible electrical dynamics:Theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2001, 6(4):444-452.
[18] YANG J, SU J Y, LI S H, et al. High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach[J]. IEEE Transactions on Industrial Electronics, 2014, 10(1):604-614.
[19] LU L, YAO B, WANG Q F, et al. Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model[J]. Automatica, 2009, 45(12):2890-2896.
[20] YAO J Y, JIAO Z X, MA D W. Adaptive robust control of DC motors with extended state observer[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7):3630-3637.
[21] MAKKAR C, DIXON W E, SAWYER W G, et al. A new continuously differentiable friction model for control systems design[C]//Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, NJ:IEEE Press, 2005:600-605.
[22] XIAN B, DAMSON D M, DE QUEIROZ M S, et al. A continuous asymptotic tracking control strategy for uncertain nonlinear systems[J]. IEEE Transactions on Automatic Control, 2004, 49(7):1206-1211.

Outlines

/