ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Transition effect on separation bubble of shock wave/boundary layer interaction in a compression ramp
Received date: 2015-10-23
Revised date: 2015-12-08
Online published: 2016-01-25
Supported by
National Natural Science Foundation of China (91441103,11372330)
Direct numerical simulations (DNS) of shock wave and transitional boundary layer interaction for a 24°compression corner at Mach number 2.9 are performed to study the effect of transition on the separation bubble at the ramp corner. At upstream, the flat-plate transition is triggered by the periodic blow and suction disturbance. The interaction of shock wave and transitional boundary layer is then simulated by setting the length of upstream flat-plate. The extent of separation agrees well with those of the experimental and direct numerical simulation data, which validate the results. Transition effect on the separation bubble in the interaction region is researched and the turbulent kinetic energy budget in the bubble is analyzed. Results indicate that the coherent structures at the early stage of transition have a serious influence on the separation bubble, in which the turbulent spots are formed by the hairpin vortices. Then the scale of separation bubble is the smallest and the shape is spike-type in the spanwise direction. With the evolution of transition, the turbulent production and dissipation term in the separation bubble gradually reduce by four times, while the turbulent transport term contributes to the balance of the turbulent production and dissipation.
TONG Fulin , LI Xinliang , TANG Zhigong , ZHU Xingkun , HUANG Jiangtao . Transition effect on separation bubble of shock wave/boundary layer interaction in a compression ramp[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(10) : 2909 -2921 . DOI: 10.7527/S1000-6893.2015.0355
[1] PLOTKIN K J. Shock wave oscillation driven by turbulent boundary layer fluctuations[J]. AIAA Journal, 1975, 13(8):1036-1040.
[2] POGGIE J, SMITS A J. Experimental evidence for plotkin model of shock unsteadiness in separated flow[J]. Physics of Fluids, 2005, 17(1):018107.
[3] TOUBER E, SANDHAM N D. Low order stochastic modeling of low-frequency motions in reflected shock-wave boundary layer interactions[J]. Journal of Fluid Mechanics, 2011, 671(3):417-465.
[4] DOLLING D S, MURPHY M T. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield[J]. AIAA Journal, 1983, 21(12):628-634.
[5] ADAMS N A. Direct simulation of the turbulent boundary layer along a compression ramp at M=3 and Reθ=1685[J]. Journal of Fluid Mechanics, 2000, 420(3):47-83.
[6] LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. Large eddy simulation of shock wave and turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2006, 565(1):135-169.
[7] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research:what next?[J]. AIAA Journal, 2001, 39(8):1517-1530.
[8] CHAPMAN D R, KUEHN D M, LARRSON H K. Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transitions:NACA Report 1356[R]. Washington, D.C.:NASA, 1958.
[9] MURPHREE Z R, YUCEIL K B, CLEMENS N T, et al. Experimental studies of transitional boundary layer shock wave interactions:AIAA-2007-1139[R]. Reston:AIAA, 2007.
[10] VANSTONE L, SAMPER D E, HILLIER R. Shock-induced separation of transitional hypersonic boundary layers:AIAA-2015-2736[R]. Reston:AIAA, 2015.
[11] GIEPMAN R H M, SCHRIJER F F J, OUDHEUSDEN B W V. High-resolution PIV measurements of a transitional shock wave-boundary layer interaction[J]. Experiments in Fluids, 2015, 56(6):1-20.
[12] POLIVANOV P A, SIDORENKO A A, MASLOV A A. Transition effect on shock wave/boundary layer interaction at M=1.47:AIAA-2015-1974[R]. Reston:AIAA, 2015.
[13] PRIEBE S, MARTIN M P. Low frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699(5):1-49.
[14] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock wave/turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China:Physics, Mechanics & Astronomy, 2010, 53(9):1651-1658.
[15] GAO H, FU D X, MA Y W, et al. Direct numerical simulation of supersonic turbulent boundary layer flow[J]. Chinese Physics Letters, 2005, 22(7):1709-1712.
[16] LI X L, FU D X, MA Y W, et al, Acoustic calculation for supersonic turbulent boundary flow[J]. Chinese Physics Letters, 2009, 26(9):094701.
[17] RINGUETTE M J, BOOKEY P, WYCKHAM C, et al. Experimental study of a mach 3 compression ramp interaction at Reθ=2400[J]. AIAA Journal, 2009, 47(2):373-385.
[18] BOOKEY P, WYCKHAM C. SMITS A J, et al. New experimental data of STBLI at DNS/LES accessible Reynolds numbers:AIAA-2005-0309[R]. Reston:AIAA, 2005.
[19] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889.
[20] MARTIN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1):270-289.
[21] PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3):530-545.
[22] PIROZZOLI S, BERNARDINI M. Direct numerical simulation database for impinging shock wave/turbulent boundary layer interaction[J]. AIAA Journal, 2011, 49(6):1307-1312.
[23] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285(1):69-94.
[24] HEAD M R, BANDYOPADHYAY P R. New aspects of turbulent boundary layer structure[J]. Journal of Fluid Mechanics, 1981, 107:297-338.
[25] LEE C B, WU J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3):0802.
[26] LEE C B. Possible universal transitional scenario in a flat plate boundary layer:measurement and visualization[J]. Physical Review E, 2000, 62(3):297-338.
/
〈 | 〉 |