ACTA AERONAUTICAET ASTRONAUTICA SINICA >
‘Coaxing effect’of prior cycling stress on material fracture mechanics performance
Received date: 2015-09-24
Revised date: 2015-11-16
Online published: 2015-12-28
Supported by
National Natural Science Foundation of China (51335003); Supported by the collaborative Innovation Center of Major Machine Manufacturing in Liaoning
The fatigue crack growth rate tests were carried out using aluminum alloy materials served in high-speed train for years, and the relationship of fatigue crack growth rate da/dN and the stress intensity factor ΔK was shown in a broken form in logarithmic coordinates. Compared with the non-service material, the crack growth rate decreases at the initial stage. Aiming at this phenomenon, the aluminum alloy materials were applied here to investigate the behavior of fatigue crack growth under 107 prior cycling stress. The influence of prior cycling stress under fatigue limit on the material fracture mechanics performance was studied in details. The results show that the curves of da/dN vs ΔK of prior cycling stress materials present a broken form in the low ΔK period. The regression analyses of the test data illustrate that the prior cycling stress plays a positive role in the fracture performance, and the prior cycling stress has‘coaxing effect’on the fatigue crack of materials.
ZHANG Xiaochen , XIE Liyang , ZHANG Ruijin , MENG Weiying , LI Ming , HU Jiexin . ‘Coaxing effect’of prior cycling stress on material fracture mechanics performance[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(10) : 3074 -3082 . DOI: 10.7527/S1000-6893.2015.0340
[1] 赵荣国, 罗希延, 任璐璐. 航空发动机涡轮盘用GH4133B合金疲劳裂纹扩展行为研究[J]. 机械工程学报, 2011, 47(18):55-65. ZHAO R G, LUO X Y, REN L L. Research on fatigue crack propagation behavior of GH4133B superalloy used in turbine disk of aero-engine[J]. Journal of Mechanical Engineering, 2011, 47(18):55-65(in Chinese).
[2] VASUDEVAN A K, SADANANDA K. Fatigue crack growth behavior of composites[J]. Metallurgical and Materials Transactions A, 1995, 26(12):3199-3210.
[3] SADANANDA K, VASUDEVAN A K. Short crack growth and internal stresses[J]. International Journal of Fatigue, 1997, 19(93):99-108.
[4] WELLS A A. Applications of fracture mechanics at and beyond general yielding[J]. British Welding Journal, 1963, 10:563-570.
[5] 赵少汴.损伤容限设计方法和设计数据[J].机械设计,2000,17(5):4-7. ZHAO S B. Design methods and design data for damage tolerance[J]. Mechanical Design, 2000, 17(5):4-7(in Chinese).
[6] IRWIN G R. Analysis of stress and strains near the end of a crack traversing a plate[J]. Journal of Applied Mechanics, 1957, 24:361-364.
[7] 穆志韬, 陈定海, 朱做涛, 等.腐蚀条件下LD2航空铝合金裂纹扩展规律研究[J]. 航空学报, 2013, 34(3):574-579. MU Z T, CHEN D H, ZHU Z T, et al. Fatigue crack growth behavior of aerospace aluminum alloy LD2 under corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):574-579(in Chinese).
[8] 李旭东, 穆志韬, 贾明明. 加载频率对航空铝合金腐蚀疲劳裂纹扩展速率的影响[J]. 机械工程材料, 2014, 38(7):50-52. LI X D, MU Z T, JIA M M. Effect of loading frequency on corrosion fatigue crack growth rate of aerospace aluminum alloy[J]. Materials for Mechanical Engineering, 2014, 38(7):50-52(in Chinese).
[9] MANN T. The influence of mean stress on fatigue crack propagation in aluminium alloys[J]. Internatinal Journal of Fatigue, 2007, 29(8):1393-1401.
[10] OKAYASU M, SAKAI K, TAKASU S. Material properties of long term naturally aged die cast Al-Si-Cu alloys[J]. International Journal of Cast Metals Research, 2011, 24(5):286-298.
[11] 储军, 郑松林, 冯金芝. 基于低幅锻炼载荷的累积强化效果模型[J]. 机械工程学报, 2011, 47(16):30-34. CHU J, ZHENG S L, FENG J Z. Cumulative strengthening effect model based on the low-amplitude training load[J]. Journal of Mechanical Engineering, 2011, 47(16):30-34(in Chinese).
[12] GOUGH H J. The fatigue of metals[M]. London:Scott, Greenwood and Son, 1924.
[13] NISITANI H, TOKAO K I. Significance of initiation, propagation and closure of microcracks in high cyclic fatigue of ductile metals[J]. Engineering Fracture Mechanics, 1981, 15(3-4):445-456.
[14] ISHIHARA S, MCEVILY A J. Coaxing effect in the small fatigue crack growth regime[J]. Scripta Materialia, 1999, 40(5):617-622.
[15] 吴志学, 吕文阁, 徐灏. 疲劳极限下损伤及"锻炼"效应[J]. 东北大学学报, 1996, 17(3):338-341. WU Z X, LV W G, XU H. Fatigue damage below the fatigue limit and the "coaxing effects"[J]. Journal of Northeastern University, 1996, 17(3):338-341(in Chinese).
[16] 郑松林. 低幅载荷对汽车前轴疲劳寿命影响的试验研究[J]. 机械强度, 2002, 24(4):547-549. ZHENG S L. Studying the effect of low amplitude loading on fatigue life of truck front axle[J]. Journal of Mechanical Strength, 2002, 24(4):547-549(in Chinese).
[17] ZHANG X C, XIE L Y, LIU J Z, et al. Statistical analysis methods of fatigue crack growth rate[J]. Transactions of Tianjin University, 2014, 20(5):322-327.
[18] 郑松林, 卢曦, 马晓婷. 汽车结构件低载强化后的疲劳断口特性[J]. 机械工程材料, 2006, 30(6):17-19. ZHENG S L, LU X, MA X T. Fracture characteristic of automobile structure strengthening under low amplitude load[J]. Materials for Mechanical Engineering, 2006, 30(6):17-19(in Chinese).
[19] 赵礼辉, 郑松林, 冯金芝. 基于低载强化特性的疲劳寿命估计方法[J]. 机械工程学报, 2013, 49(8):115-122. ZHAO L H, ZHENG S L, FENG J Z. Fatigue life prediction based on simplified low-amplitude-load strengthening model[J]. Journal of Mechanical Engineering, 2013, 49(8):115-122(in Chinese).
[20] KUNZ L, LUKAS P, KONECNA R. Initiation and propagation of fatigue cracks in cast in 713LC superalloy[J]. Engineering Fracture Mechanics, 2010, 77(11):2008-2015.
/
〈 | 〉 |