[1] 赵荣国, 罗希延, 任璐璐. 航空发动机涡轮盘用GH4133B合金疲劳裂纹扩展行为研究[J]. 机械工程学报, 2011, 47(18):55-65. ZHAO R G, LUO X Y, REN L L. Research on fatigue crack propagation behavior of GH4133B superalloy used in turbine disk of aero-engine[J]. Journal of Mechanical Engineering, 2011, 47(18):55-65(in Chinese).
[2] VASUDEVAN A K, SADANANDA K. Fatigue crack growth behavior of composites[J]. Metallurgical and Materials Transactions A, 1995, 26(12):3199-3210.
[3] SADANANDA K, VASUDEVAN A K. Short crack growth and internal stresses[J]. International Journal of Fatigue, 1997, 19(93):99-108.
[4] WELLS A A. Applications of fracture mechanics at and beyond general yielding[J]. British Welding Journal, 1963, 10:563-570.
[5] 赵少汴.损伤容限设计方法和设计数据[J].机械设计,2000,17(5):4-7. ZHAO S B. Design methods and design data for damage tolerance[J]. Mechanical Design, 2000, 17(5):4-7(in Chinese).
[6] IRWIN G R. Analysis of stress and strains near the end of a crack traversing a plate[J]. Journal of Applied Mechanics, 1957, 24:361-364.
[7] 穆志韬, 陈定海, 朱做涛, 等.腐蚀条件下LD2航空铝合金裂纹扩展规律研究[J]. 航空学报, 2013, 34(3):574-579. MU Z T, CHEN D H, ZHU Z T, et al. Fatigue crack growth behavior of aerospace aluminum alloy LD2 under corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):574-579(in Chinese).
[8] 李旭东, 穆志韬, 贾明明. 加载频率对航空铝合金腐蚀疲劳裂纹扩展速率的影响[J]. 机械工程材料, 2014, 38(7):50-52. LI X D, MU Z T, JIA M M. Effect of loading frequency on corrosion fatigue crack growth rate of aerospace aluminum alloy[J]. Materials for Mechanical Engineering, 2014, 38(7):50-52(in Chinese).
[9] MANN T. The influence of mean stress on fatigue crack propagation in aluminium alloys[J]. Internatinal Journal of Fatigue, 2007, 29(8):1393-1401.
[10] OKAYASU M, SAKAI K, TAKASU S. Material properties of long term naturally aged die cast Al-Si-Cu alloys[J]. International Journal of Cast Metals Research, 2011, 24(5):286-298.
[11] 储军, 郑松林, 冯金芝. 基于低幅锻炼载荷的累积强化效果模型[J]. 机械工程学报, 2011, 47(16):30-34. CHU J, ZHENG S L, FENG J Z. Cumulative strengthening effect model based on the low-amplitude training load[J]. Journal of Mechanical Engineering, 2011, 47(16):30-34(in Chinese).
[12] GOUGH H J. The fatigue of metals[M]. London:Scott, Greenwood and Son, 1924.
[13] NISITANI H, TOKAO K I. Significance of initiation, propagation and closure of microcracks in high cyclic fatigue of ductile metals[J]. Engineering Fracture Mechanics, 1981, 15(3-4):445-456.
[14] ISHIHARA S, MCEVILY A J. Coaxing effect in the small fatigue crack growth regime[J]. Scripta Materialia, 1999, 40(5):617-622.
[15] 吴志学, 吕文阁, 徐灏. 疲劳极限下损伤及"锻炼"效应[J]. 东北大学学报, 1996, 17(3):338-341. WU Z X, LV W G, XU H. Fatigue damage below the fatigue limit and the "coaxing effects"[J]. Journal of Northeastern University, 1996, 17(3):338-341(in Chinese).
[16] 郑松林. 低幅载荷对汽车前轴疲劳寿命影响的试验研究[J]. 机械强度, 2002, 24(4):547-549. ZHENG S L. Studying the effect of low amplitude loading on fatigue life of truck front axle[J]. Journal of Mechanical Strength, 2002, 24(4):547-549(in Chinese).
[17] ZHANG X C, XIE L Y, LIU J Z, et al. Statistical analysis methods of fatigue crack growth rate[J]. Transactions of Tianjin University, 2014, 20(5):322-327.
[18] 郑松林, 卢曦, 马晓婷. 汽车结构件低载强化后的疲劳断口特性[J]. 机械工程材料, 2006, 30(6):17-19. ZHENG S L, LU X, MA X T. Fracture characteristic of automobile structure strengthening under low amplitude load[J]. Materials for Mechanical Engineering, 2006, 30(6):17-19(in Chinese).
[19] 赵礼辉, 郑松林, 冯金芝. 基于低载强化特性的疲劳寿命估计方法[J]. 机械工程学报, 2013, 49(8):115-122. ZHAO L H, ZHENG S L, FENG J Z. Fatigue life prediction based on simplified low-amplitude-load strengthening model[J]. Journal of Mechanical Engineering, 2013, 49(8):115-122(in Chinese).
[20] KUNZ L, LUKAS P, KONECNA R. Initiation and propagation of fatigue cracks in cast in 713LC superalloy[J]. Engineering Fracture Mechanics, 2010, 77(11):2008-2015. |