ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Coating corrosion failure analysis and influence of titanium-steel bolted lap joints
Received date: 2015-11-10
Revised date: 2015-12-11
Online published: 2015-12-28
Supported by
National Natural Science Foundation of China (51375490)
Coating is the main anti-corrosion system of aircraft, and local damage of coating has an impact on other complete areas. The coat failure in concealed position is difficult to be found and affects the flight safety. Corrosion experiment is performed for titanium-steel bolted lap joints with airplane service environment simulation. After selecting appropriate boundary conditions, the causes and effects of lap surface coating failure are analyzed by finite element method which is based on the mathematical model of galvanic corrosion. The results indicate that the coating failure process could be divided into three stages; the effect of galvanic corrosion causes the electric field around the lap area; the directional accelerated motion of Cl- under the potential gradient causes electroosmotic blistering of coating. With the increase of the coating failure area, the proportion of the cathode and anode area is smaller, the corrosion of the anode reduces, the position of the maximum corrosion current density changes, and the value of the corrosion current density decreases. The failure area of the coating could be predicted through calculation of electric field of the solution around the overlapping structure. It provides the technical support for the maintenance of the aircraft coating system.
CHEN Yueliang , WANG Chenguang , ZHANG Yong , BIAN Guixue . Coating corrosion failure analysis and influence of titanium-steel bolted lap joints[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(11) : 3528 -3534 . DOI: 10.7527/S1000-6893.2015.0336
[1] 骆晨, 蔡健平, 许广兴, 等. 航空有机涂层在户内加速试验与户外暴露中的损伤等效关系[J]. 航空学报, 2014, 35(6):1750-1758. LUO C, CAI J P, XU G X, et al. Equivalent degradation of aviation organic coating during indoor accelerated testing and outdoor exposure[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1750-1758(in Chinese).
[2] 谭晓明, 陈跃良, 段成美. 飞机结构搭接件腐蚀三维裂纹扩展特性分析[J]. 航空学报, 2005, 26(1):66-69. TAN X M, CHEN Y L, DUAN C M. Analysis of growth characterization of 3-D cracks in corroded lap joints aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(1):66-69(in Chinese).
[3] 张腾, 何宇廷, 高潮, 等. 2A12-T4铝合金长期大气腐蚀损伤规律[J]. 航空学报, 2015, 36(2):661-671. ZHANG T, HE Y T, GAO C, et al. Damage rule of 2A12-T4 aluminum alloy with long-term atmospheric corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):661-671(in Chinese).
[4] DEROSE J A, SUTER T, HACK T, et al. Aluminium alloy corrosion of aircraft structures:modelling and simulation[M]. Southampton:WIT Press, 2013:170-177.
[5] 文邦伟, 朱玉琴. 美军基于模拟仿真的加速腐蚀系统[J]. 装备环境工程, 2011, 8(1):42-47. WEN B W, ZHU Y Q. U. S. Army accelerated cor-rosion system based on simulation[J]. Equipment Environmental Engineering, 2011, 8(1):42-47(in Chinese).
[6] 杜敏, 郭庆锟, 周传静. 碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究[J]. 中国腐蚀与防护学报, 2006, 26(5):263-266. DU M, GUO Q K, ZHOU C J. Galvanic corrosion of carbon steel/titanium and carbon steel/titanium/navel brass in seawater[J]. Journal of Chinese Society for Corrosion and Protection, 2006, 26(5):263-266(in Chinese).
[7] 张慧霞, 程文华, 刘华剑. 有机涂层/低合金钢体系在海水中电偶腐蚀[J]. 腐蚀与防护, 2012, 33(2):34-38. ZHANG H X, CHENG W H, LIU H J. Galvanic corrosion behavior of the organic coating/low alloy steel system in seawater[J]. Corrosion & Protection, 2012, 33(2):34-38(in Chinese).
[8] 刘华剑. 有机涂层下船用钢电偶腐蚀规律研究[D]. 青岛:中国海洋大学, 2011:34-52. LIU H J. The investigation of galvanic corrosion under the organic coating on ship steel[D]. Qingdao:Ocean University of China, 2011:34-52(in Chinese).
[9] SYKES J M, XU Y. Electrochemical studies of galvanic action beneath organic coatings[J]. Progress in Organic Coatings, 2012, 74(2):320-325.
[10] 陈兴伟. 船舶典型结构材料电偶腐蚀行为研究[D]. 青岛:中国海洋大学, 2011:13-14. CHEN X W. Research on galvanic corrosion behavior of ship typical materials[D]. Qingdao:Ocean University of China, 2011:13-14(in Chinese).
[11] 刘文珽, 李玉海. 飞机结构日历寿命体系评定技术[M]. 北京:航空工业出版社, 2004:84-87. LIU W T, LI Y H. Assess technology of the system in aircraft structure calendar life[M]. Beijing:Aviation Industry Press, 2004:84-87(in Chinese).
[12] 刘文珽, 贺小帆. 飞机结构腐蚀/老化控制与日历延寿技术[M]. 北京:国防工业出版社, 2010:69-70. LIU W T, HE X F. Corrosion/aging control and prolonging the calendar life technology of aircraft structure[M]. Beijing:National Defence Industry Press, 2010:69-70(in Chinese).
[13] SCHNEIDER O, KELLYA R G. Localized coating failure of epoxy-coated aluminium alloy 2024-T3 in 0.5 M NaCl solutions:Correlation between coating degradation, blister formation and local chemistry within blisters[J]. Corrosion Science, 2007, 49(2):594-619.
[14] WILLIAMS G, MCMURRAY H N. Inhibition of filiform corrosion on organic-coated AA2024-T3 by smart-release cation and anion-exchange pigments[J]. Electrochimica Acta, 2012, 69:287-294.
[15] WILLIAMS G, GRACE R. Chloride-induced filiform corrosion of organic-coated magnesium[J]. Electrochimica Acta, 2011, 56(4):1894-1903.
[16] ROMANO A P, OLIVIER M G. Investigation by electrochemical impedance spectroscopy of filiform corrosion of electrocoated steel substrates[J]. Organic Coatings, 2015, 89:1-7.
[17] 汪定江, 潘庆军, 夏成宝. 军用飞机的腐蚀与防护[M]. 北京:航空工业出版社, 2006:14-15. WANG D J, PAN Q J, XIA C B. Corrosion and protection of military aircraft[M]. Beijing:Aviation Industry Press, 2006:14-15(in Chinese).
[18] 曹楚南. 腐蚀电化学原理[M]. 北京:化学工业出版社, 2004:132-143. CAO C N. Principles of electrochemistry of corrosion[M]. Beijing:Chemistry Industry Press, 2004:132-143(in Chinese).
[19] 胡会利, 李宁. 电化学测量[M]. 北京:国防工业出版社, 2013:108-109. HU H L, LI N. Electrochemical measurement[M]. Beijing:National Defence Industry Press, 2013:108-109(in Chinese).
[20] DEFLORIAN F, ROSSI S. An EIS study of ion diffusion through organic coatings[J]. Electrochimica Acta, 2006, 51(8-9):1736-1744.
[21] 吕平, 李华灵, 黄微波. 有机防护涂层老化研究进展[J]. 材料导报, 2011, 25(7):83-85. LV P, LI H L, HUANG W B. New progress of the research on organic protective coatings[J]. Materials Review, 2011, 25(7):83-85(in Chinese).
[22] WELDON D G. 涂层失效分析[M]. 杨智, 雍兴跃, 译. 北京:化学工业出版社, 2011:25-27. WELDON D G. Failure analysis of paints and coatings[M]. YANG Z, YONG X Y, translated. Beijing:Chemistry Industry Press, 2011:25-27(in Chinese).m alloy 2024-T3 in 0.5 M NaCl solutions: Correlation between coating degradation, blis-ter formation and local chemistry within blisters[J].Cor-rosion Science, 2007, 49:594-619
[12] G.Williams, H.N. McMurray. Inhibition of filiform cor-rosion on organic-coated AA2024-T3 by smart-release cation and anion-exchange pigments[J].Electrochimica Acta, 2012, 69:287-294
[13]Geraint Williams, Richard Grace.Chloride-induced fili-form corrosion of organic-coated magnesium[J].Electro-chimica Acta, 2011, 56(4):1894-1903
[14] A-P. Romano, M.-G. Olivier. .Investigation by electro-chemical impedance spectroscopy of filiform corrosion of electrocoated steel substrates[J].Organic Coatings, 2015, 89:1-7
[15] Wang Dingjiang, Pan Qingjun, Xia Baocheng.Corrosion and protection of military aircraft[J]., 2006, :14-15
[16] Cao Chunan.Principles of electrochemistry of corrosion:132-143[J]., 2004, :132-143
[17] Hu Huili, Li Ning.Electrochemical measurement [J]., 2013, :108-109
[18]Eflorian F, Rossi S.An EIS study of ion diffusion through organic coatings[J].Electrochimica Acta, 2006, 51(89):1736-1744
[19]Lv Ping, Li Hualing, Huangweibo.New progress of the research on organic protective coatings[J].Corrosion &Protection, 2012, 33(2):34-38
[20] Dwight G W.Failure analysis of paints and coatings[J]., 2011, :25-27
/
〈 | 〉 |