Material Engineering and Mechanical Manufacturing

Influence of ultrasonic vibration cutting on mode-coupling chatter

  • SUI He ,
  • ZHANG Deyuan ,
  • CHEN Huawei ,
  • ZHANG Xiangyu
Expand
  • School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China

Received date: 2015-05-22

  Revised date: 2015-08-18

  Online published: 2015-09-02

Supported by

Applicated Research and Development Plan of Heilongjiang Province(GA12A402)

Abstract

This paper analyses the influence of ultrasonic vibration cutting (UVC) on the mode-coupling chatter through both theoretical model and experimental measurement. UVC method can suppress the mode-coupling chatter by decreasing the input energy of a cutting system. On the one hand, there is an energy threshold of mode-coupling chatter for a determined system, which is the integral of cutting power in cutting time. The established critical cutting depth model shows that UVC method can enlarge the critical cutting depth. It means in a shorter cutting time, UVC system can sustain larger cutting power and keep the energy threshold uncharged, maintaining the system stable. On the other hand, under the same condition, UVC method reduces effectively the cutting force and system input energy to suppress the mode-coupling chatter. Experiments have been conducted using the weak stiffness boring bar. The results indicate that UVC method can enlarge the critical cutting depth and the critical cutting depth is in inverse proportion to duty ratio; UVC method can reduce the chatter amplitude and obtain better cutting quality.

Cite this article

SUI He , ZHANG Deyuan , CHEN Huawei , ZHANG Xiangyu . Influence of ultrasonic vibration cutting on mode-coupling chatter[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(5) : 1696 -1704 . DOI: 10.7527/S1000-6893.2015.0230

References

[1] TLUSTY J. Machine dynamics[M]. New York:Springer US Press, 1985:48-153.
[2] ALTINTAS Y. Manufacturing automation:Metal cutting mechanics, machine tool vibrations and CNC design[M]. Cambridge:Cambridge University Press, 2000:17-93.
[3] FASSEN R P H, VAN D W N, OSTERLING J A J. Prediction of regenerative chatter by modelling and analysis of high-speed milling[J]. International Journal of Machine Tools and Manufacture, 2003, 43(14):1437-1446.
[4] TLUSTY J, POLACEK M. The stability of machine tools against self-excited vibrations in machining[J]. International Research in Production Engineering, 1963, 1(1):465-474.
[5] OLGAC N, HOSEK M. A new perspective and analysis for regenerative machine tool chatter[J]. International Journal of Machine Tools and Manufacture, 1998, 38(7):783-798.
[6] WIERCIGROCH M, BUDAK E. Sources of nonlinearities, chatter generation and suppression in metal cutting[J]. Philosophical Transactions of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences, 2001, 359(1781):663-693.
[7] 于骏一, 杨辅, 吴博达. 变速切削方法的减振原理[J]. 机械工程学报, l995, 31(6):11-16. YU J Y, YANG F, WU B D. Study on the mechanism of suppressing chatter by cutting with varying spindle speed[J]. Journal of Mechanical Engineering, l995, 31(6):11-16(in Chinese).
[8] MA C X, MA J, SHAMOTO E, et al. Analysis of regenerative chatter suppression with adding the ultrasonic elliptical vibration on the cutting tool[J]. Precision Engineering, 2011, 35(2):329-338.
[9] HOSHI T, SAKISAKA N, MORIYAMA I. Study for practical application of fluctuating speed cutting for regenerative chatter control[J]. Annals of the CIRP, 1977, 25(1):175-179.
[10] LIU C R, LIU T M. Automated chatter suppression by tool geometry control[J]. Journal of Manufacturing Science and Engineering, 1985, 107(2):95-98.
[11] NATH C, RAHMAN M, NEO K S. A study on the effect of tool nose radius in ultrasonic elliptical vibration cutting of tungsten carbide[J]. Journal of Materials Processing Technology, 2009, 209(17):5830-5836.
[12] 李文. 精密高效超声振动切削工艺性研究[D]. 北京:北京航空航天大学, 2011:22-30. LI W. Study on high precision ultrasonic vibration cutting technology[D]. Beijing:Beihang University, 2011:22-30(in Chinese).
[13] 司品浩. 超弱刚度超声椭圆振动加工技术研究[D]. 北京:北京航空航天大学, 2010:1-32. SI P H. Study on ultrasonic elliptical vibration cutting technology of ultra-weak rigidity processing[D]. Beijing:Beihang University, 2010:1-32(in Chinese).
[14] 高印寒, 沈维华. 超声波振动镗削"刚度化"的研究[J]. 机械工程学报, 1996, 32(1):28-32. GAO Y H, SHEN W H. Study on the "rigidity" with ultrasonic vibration boring[J]. Journal of Mechanical Engineering, l996, 32(1):28-32(in Chinese).
[15] 马春翔, 潘铭跃, 王海丽. 弱刚度零件的超声波椭圆振动切削加工[J]. 南京航空航天大学学报, 2005, 37(增刊):121-124. MA C X, PAN M Y, WANG H L. Ultrasonic elliptical vibration cutting for weak rigidity work-piece[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(Suppl.):121-124(in Chinese).
[16] 马春翔, 社本英二, 森肋俊道. 超声波椭圆振动切削提高加工系统稳定性的研究[J]. 兵工学报, 2004, 25(6):752-756. MA C X, SHAMOTO E, MORIWAKI T. A Study on the improvement of machining system stability by applying ultrasonic elliptical vibration cutting[J]. Acta Armamentarii, 2004, 25(6):752-756(in Chinese).
[17] XIAO M, KARUBE S, SOUTOME T, et al. Analysis of chatter suppression in vibration cutting[J]. International Journal of Machine Tools and Manufacture, 2002, 42(15):1677-1685.
[18] 于劲, 周晓勤. 基于高频变速特征的不分离型超声波振动车削抑制颤振机理[J]. 兵工学报, 1993, 1(1):52-57. YU J, ZHOU X Q. On the mechanism of chatter suppression with high frequency, vari-speed unseparated type ultrasonic vibration turning[J]. Acta Armamentarii, 1993, 1(1):52-57(in Chinese).
[19] 王跃辉, 王民. 金属切削过程颤振控制技术的研究进展[J]. 机械工程学报, 2010, 46(7):166-174. WANG Y H, WANG M. Advances on machining chatter suppression research[J]. Journal of Mechanical Engineering, 2010, 46(7):166-174(in Chinese).
[20] 于骏一, 郑德涛. 耦合型切削颤振的相位诊断[J]. 机械工程学报, 1984, 20(3):61-72. YU J Y, ZHENG D T. Diagnosing the chatter as mode coupling by measuring phase[J]. Journal of Mechanical Engineering, 1984, 20(3):61-72(in Chinese).
[21] GASPARETTO A. A system theory approach to mode coupling chatter in machining[J]. Journal of Dynamic Systems, Measurement, and Control, 1998, 120(4):545-547.
[22] 王洋. 刚度主轴方位对模态耦合再生切削系统动态响应谐参数的影响[D]. 长春:吉林大学, 2009:33-45. WANG Y. Influence of the orientation of principal stiffness axes on the harmonic parameters of dynamic response in mode-vcoupled regenerative machining system[D]. Changchun:Jilin University, 2009:33-45(in Chinese).
[23] MERCHANT M E. Basic mechanics of the metal cutting process[J]. Journal of Applied Mechanics, 1945, 16(5):168-175.
[24] KOENIGSBERGER F, TLUSTY J. Machine tool structures[M]. Oxford:Praguepergamort Press, 1970:1-150.

Outlines

/