Solid Mechanics and Vehicle Conceptual Design

Concurrent topology optimization based on multiphase materials under steady thermal conduction

  • JIA Jiao ,
  • LONG Kai ,
  • CHENG Wei
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China

Received date: 2015-04-09

  Revised date: 2015-07-30

  Online published: 2015-08-28

Supported by

National Natural Science Foundation of China (11202078);Beijing Natural Science Foundation (3143025);The Key Laboratory of Lightweight and Reliability Technology for Engineering Vehicle,Education Department of Hunan Province (Changsha University of Science&Technology)(2013KFJJ01);Fundamental Research Funds for the Central Universities (2014ZD16)

Abstract

Based on multiphase materials, a concurrent optimization model of macrostructures and porous microstructures is proposed. In this model, the minimized heat compliance is taken as objective function. Structural volume fraction and microstructure mass are taken as constraints. Macro design variables and micro phase design variables are introduced into macrostructures and microstructures independently, and are integrated into one system with elemental phase density. The punishment relationship between elemental phase density and thermal conductive coefficient is built through uniform interpolation model, and the sensitivity of objective function is deduced. To eliminate the checkerboard pattern and mesh-dependence problem, the heat compliance is filtered using a partial differential equation. The effects of material characteristics, heat loads, volume fraction and microstructure mass constraints are discussed with 2D problems. The numerical results indicate that the proposed method is reliable and efficient to the concurrent topology optimization of macrostructures and porous microstructures based on multiphase materials.

Cite this article

JIA Jiao , LONG Kai , CHENG Wei . Concurrent topology optimization based on multiphase materials under steady thermal conduction[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(4) : 1218 -1227 . DOI: 10.7527/S1000-6893.2015.0214

References

[1] BENDSOE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2):197-224.
[2] SIGMUND O. Materials with prescribed constitutive parameters-An inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17):2313-2329.
[3] SIGMUND O, TORQUATO S. Design of materials with extreme thermal expansion using a three-phase topology optimization method[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(6):1037-1067.
[4] ZHANG W H, WANG F W. Topology optimal design of material microstructures using strain energy-based method[J]. Chinese Journal of Aeronautics, 2007, 20(4):321-328.
[5] MOSES E, FUCHS M B, RYVKIN M. Topological design of modular structures under arbitrary loading[J]. Structural and Multidisciplinary Optimization, 2002, 24(6):407-417.
[6] HUANG X D, XIE Y M. Optimal design of periodic structures using evolutionary topology optimization[J]. Structural and Multidisciplinary Optimization, 2008, 36(6):597-606.
[7] XIE Y M, ZUO Z H, HUANG X D, et al. Convergence of topological patterns of optimal periodic structures under multiple scales[J]. Structural and Multidisciplinary Optimization, 2012, 46(1):41-50.
[8] GUO X, CHENG G D. Recent development in structural design and optimization[J]. Acta Mechanica Sinica, 2010, 26(6):807-823.
[9] RODRIGUES H, GUEDES J M, BENDSOE M P. Hierarchical optimization of material and structure[J]. Structural and Multidisciplinary Optimization, 2002, 24(1):1-10.
[10] LIU L, YAN J, CHENG G D. Optimum structures with homogeneous optimum truss-like material[J]. Computers & Structures, 2008, 86(13):1417-1425.
[11] YAN J, CHENG G D, LIU L. A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials[J]. International Journal for Simulation and Multidisciplinary Design Optimization, 2008, 2(4):259-266.
[12] NIU B, YAN J, CHENG G D. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency[J]. Structural and Multidisciplinary Optimization, 2009, 39(2):115-132.
[13] 张卫红, 孙士平. 多孔材料/结构尺度关联的一体化拓扑优化技术[J]. 力学学报, 2006, 38(4):522-529. ZHANG W H, SUN S P. Integrated design of porous materials and structures with scale-coupled effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4):522-529(in Chinese).
[14] ZHANG W H, SUN S P. Scale-related topology optimization of cellular materials and structures[J]. International Journal for Numerical Methods in Engineering, 2006, 68(9):993-1011.
[15] 阎军, 刘岭, 刘晓峰, 等. 考虑尺寸效应的模块化结构两层级优化设计[J]. 力学学报, 2010, 42(2):268-274. YAN J, LIU L, LIU X F, et al. Concurrent hierarchical optimization for structures composed of modules considering size effects[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2):268-274(in Chinese).
[16] LIU Y D, YIN Y H, GUO Z Z. Static and dynamic design based on hierarchical optimization for materials and structure of porous metals[J]. Science China Technological Sciences, 2012, 55(10):2808-2814.
[17] HUANG X D, ZHOU S W, XIE Y M, et al. Topology optimization of microstructures of cellular materials and composites for macrostructures[J]. Computational Materials Science, 2013, 67:397-407.
[18] ZUO Z H, HUANG X D, RONG J H, et al. Multi-scale design of composite materials and structures for maximum natural frequencies[J]. Material and Design, 2013, 51:1023-1034.
[19] YAN X L, HUANG X D, ZHA Y, et al. Concurrent topology optimization of structures and their composite microstructures[J]. Computers & Structures, 2014, 133:103-110.
[20] XU B, XIE Y M. Concurrent design of composite macrostructure and cellular microstructure under random excitations[J]. Composite Structures, 2015, 123:65-77.
[21] XU B, JIANG J S, XIE Y M. Concurrent design of composite macrostructure and multi-phase material microstructure for minimum dynamic compliance[J]. Composite Structures, 2015, 128:221-233.
[22] SIGMUND O. Design of multiphysics actuators using topology optimization Part Ⅱ:Two material structures[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49):6605-6627.
[23] MEI Y L, WANG X M. A level set method for structural topology optimization with multi-constraints and multimaterials[J]. Acta Mechanica Sinica, 2004, 20(5):507-518.
[24] WANG M Y, ZHOU S W. Synthesis of shape and topology of multi-material structures with a phase-field method[J]. Journal of Computer-Aided Materials Design, 2004, 11(2-3):117-138.
[25] 高彤, 张卫红, Duysinx PIERRE. 多相材料结构拓扑优化:体积约束还是质量约束?[J]. 力学学报, 2011, 43(2):296-305. GAO T, ZHANG W H, PIERRE D. Topology optimization of structures designed with multiphase materials:Volume constraint or mass constraint?[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2):296-305(in Chinese).
[26] TAVAKOLI R, MOHSENI S M. Alternating active-phase algorithm for multimaterial topology optimization problems:A 115-line MATLAB implementation[J]. Structural and Multidisciplinary Optimization, 2014, 49(4):621-642.
[27] 孙士平, 张卫红. 多相材料结构拓扑优化的周长控制方法研究[J]. 航空学报, 2006, 27(5):963-968. SUN S P, ZHANG W H. Investigation of perimeter control methods for structural topology optimization with multiphase materials[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):963-968(in Chinese).
[28] STEGMANN J, LUND E. Discrete material optimization of general composite shell structures[J]. International Journal for Numerical Methods in Engineering, 2005, 62(14):185-197.
[29] 段尊义, 阎军, 牛斌, 等. 基于改进离散材料插值格式的复合材料结构优化设计[J]. 航空学报, 2012, 33(12):2221-2229. DUAN Z Y, YAN J, NIU B, et al. Design optimization of composite materials based on improved discrete materials optimization model[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2221-2229(in Chinese).
[30] LAZAROV B S, SIGMUND O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6):765-781.
[31] ANDREASSEN E, CLAUSEN A, SCHEVENELS M, et al. Efficient topology optimization in MATLAB using 88 lines of code[J]. Structural and Multidisciplinary Optimization, 2011, 43(1):1-16.
[32] SVANBERG K. The method of moving asymptotes-A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.

Outlines

/