ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Study and modification of cross-flow induced transition model based on local variables
Received date: 2015-04-01
Revised date: 2015-06-27
Online published: 2015-07-17
Supported by
National Basic Research Program of China(2014CB744804)
The transition prediction model proposed by Langtry and Menter needs to be modified for predicting cross-flow induced transition. Local variable Helicity is found to be capable of indicating cross-flow information in the boundary layer, so it can be used to construct cross-flow transition prediction which is compatible with complex configuration and modern computational fluid dynamics(CFD) parallelized computation. The cross-flow transition prediction model based on Helicity parameter is realized and has the ability to capture the influence of different Reynolds numbers for infinite swept wing NLF(2)-0415 with sweep angle of 45°. However, the difference between the realized model result and experimental data for 6:1 prolate spheroid is large. In this paper, cross velocity factor is considered to modify the realized model aimed at improving the shortcoming of realized model. The solver of cross velocity is simplified and approximated for local calculation, which makes the modified cross-flow model retain the superiority of totally using only local variables. Finally, NLF(2)-0415 wing, 6:1 prolate spheroid and DLR-F5 wing are simulated by the modified model. The comparison between the simulation and experiment data indicates that the modified cross-flow transition prediction model can capture cross-flow induced transition phenomenon.
SHI Yayun , BAI Junqiang , HUA Jun , YANG Tihao . Study and modification of cross-flow induced transition model based on local variables[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(3) : 780 -789 . DOI: 10.7527/S1000-6893.2015.0194
[1] KRIMMELBEIN N, KRUMBEIN A. Automatic transition prediction for three-dimensional configurations with focus on industrial application[J]. Journal of Aircraft, 2011, 48(6):1877-1887.
[2] LANGTRY R B, MENTER F. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[3] ARNAL D, CASALIS G. Laminar-turbulent transition prediction in three-dimensional fows[J]. Progress in Aerospace Sciences, 2000, 36(2):173-191.
[4] SEYFERT C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012:1-14.
[5] CHOI J H, KWON O J. Enhancement of a correlation-based transition turbulence model for simulating crossflow instability[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014:1-16.
[6] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型研究[J]. 航空学报, 2015, 32(1):151-158. XU J K, BAI J Q, QIAO L, et al. Study of transition model for predicting crossflow instabilities[J]. Acta Aeronautica et Astronautica Sinica, 2015, 32(1):151-158(in Chinese).
[7] WATANABE Y, MISAKA T, OBAYASHI S. Application of crossflow transition criteria to local correlation-based transition model[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009:1-13.
[8] KOHAMA Y, DAVIS S. A new parameter for predicting crossflow instability[J]. JSME International Journal, 1993, 36(1):80-85.
[9] MEDIDA S, BAEDER J D. A new crossflow transition onset criterion for rans turbulence models[C]//21st AIAA Computational Fluid Dynamics Conference. Reston:AIAA,2013:1-9.
[10] DAGENHART J R. Crossflow stability and transition experiments in a swept-wing flow:NASA TM NO.108650[R]. Washington, D.C.:NASA, 1992.
[11] MULLER C, HERBST F. Modeling of crossflow-induced transition based on:local variables[C]//6th European Conference on Computational Fluid Dynamics. Hannover:Computational Fluid Dynamics, 2014:1-8.
[12] SARIC W S, REED H L, WHITE E B. Stability and transition of three-dimensional boundary layers[J]. Annu Rev Fluid Mech, 2003, 35(1):413-440.
[13] IMAYAMA S. Experimental study of the rotating-disk boundary-layer flow:SE-10044[R]. Stockholm, Sweden:[s.n.], 2012.
[14] KOHAMA Y, SENDAI L. Some expectation on the mechanism of cross-flow instability in a swept wing flow[J]. Acta Mechanica, 1986, 66(1):21-38.
[15] HERBST F, FIALA A, SEUME J R. Modeling vortex generating jet-induced transition in low-pressure turbines[J]. Journal of Turbomachinery, 2013, 136(7):V06BT37A023.
[16] ROE P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(1):1598-1605.
[17] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[18] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized cfd codes[D]. Ottawa:Institut für Thermische Strümungsmaschinen und Maschinenlaboratorium, Universität Stuttgart, 2006.
[19] SARIC W, TAKAGI S, MOUSSEUX M. The asu unsteady wind tunnel and fundamental requirements for freestream turbulence measurements[C]//AIAA 26th Aerospace Sciences Meeting. Reston:AIAA, 1988:1-10.
[20] WANG L, FU S, CARNARIUS A, et al. A modular RANS approach for modelling laminar-turbulent transition in turbomachinery flows[J]. International Journal of Heat and Fluid Flow, 2012, 34(1):62-69.
[21] GRABE C, KRUMBEIN A. Extension of the γ-Reθt model for prediction of crossflow transition[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014:1-14.
/
〈 | 〉 |