[1] KRIMMELBEIN N, KRUMBEIN A. Automatic transition prediction for three-dimensional configurations with focus on industrial application[J]. Journal of Aircraft, 2011, 48(6):1877-1887.
[2] LANGTRY R B, MENTER F. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[3] ARNAL D, CASALIS G. Laminar-turbulent transition prediction in three-dimensional fows[J]. Progress in Aerospace Sciences, 2000, 36(2):173-191.
[4] SEYFERT C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012:1-14.
[5] CHOI J H, KWON O J. Enhancement of a correlation-based transition turbulence model for simulating crossflow instability[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014:1-16.
[6] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型研究[J]. 航空学报, 2015, 32(1):151-158. XU J K, BAI J Q, QIAO L, et al. Study of transition model for predicting crossflow instabilities[J]. Acta Aeronautica et Astronautica Sinica, 2015, 32(1):151-158(in Chinese).
[7] WATANABE Y, MISAKA T, OBAYASHI S. Application of crossflow transition criteria to local correlation-based transition model[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009:1-13.
[8] KOHAMA Y, DAVIS S. A new parameter for predicting crossflow instability[J]. JSME International Journal, 1993, 36(1):80-85.
[9] MEDIDA S, BAEDER J D. A new crossflow transition onset criterion for rans turbulence models[C]//21st AIAA Computational Fluid Dynamics Conference. Reston:AIAA,2013:1-9.
[10] DAGENHART J R. Crossflow stability and transition experiments in a swept-wing flow:NASA TM NO.108650[R]. Washington, D.C.:NASA, 1992.
[11] MULLER C, HERBST F. Modeling of crossflow-induced transition based on:local variables[C]//6th European Conference on Computational Fluid Dynamics. Hannover:Computational Fluid Dynamics, 2014:1-8.
[12] SARIC W S, REED H L, WHITE E B. Stability and transition of three-dimensional boundary layers[J]. Annu Rev Fluid Mech, 2003, 35(1):413-440.
[13] IMAYAMA S. Experimental study of the rotating-disk boundary-layer flow:SE-10044[R]. Stockholm, Sweden:[s.n.], 2012.
[14] KOHAMA Y, SENDAI L. Some expectation on the mechanism of cross-flow instability in a swept wing flow[J]. Acta Mechanica, 1986, 66(1):21-38.
[15] HERBST F, FIALA A, SEUME J R. Modeling vortex generating jet-induced transition in low-pressure turbines[J]. Journal of Turbomachinery, 2013, 136(7):V06BT37A023.
[16] ROE P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(1):1598-1605.
[17] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[18] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized cfd codes[D]. Ottawa:Institut für Thermische Strümungsmaschinen und Maschinenlaboratorium, Universität Stuttgart, 2006.
[19] SARIC W, TAKAGI S, MOUSSEUX M. The asu unsteady wind tunnel and fundamental requirements for freestream turbulence measurements[C]//AIAA 26th Aerospace Sciences Meeting. Reston:AIAA, 1988:1-10.
[20] WANG L, FU S, CARNARIUS A, et al. A modular RANS approach for modelling laminar-turbulent transition in turbomachinery flows[J]. International Journal of Heat and Fluid Flow, 2012, 34(1):62-69.
[21] GRABE C, KRUMBEIN A. Extension of the γ-Reθt model for prediction of crossflow transition[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014:1-14. |