ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Influence of continuous trailing-edge variable camber on aerodynamic characteristics of transonic airfoils
Received date: 2015-03-09
Revised date: 2015-05-23
Online published: 2015-06-24
Supported by
National Basic Research Program of China(2014CB744800)
The influence of continuous trailing-edge variable camber on the aerodynamic characteristics of transonic airfoils is investigated. Before the continuous trailing-edge variable camber is considered, the aerodynamic drag reduction optimization design of the transonic airfoil is carried out based on the optimization design system constructed in this paper. With different constraints added, two kinds of transonic airfoils are obtained, namely the shock-free airfoil and the supercritical airfoil. Then the optimization design is conducted based on the two airfoils at different lift coefficients, by taking the deflection angle of the trailing-edge as the design variable and the minimum drag coefficient as the objective. And the effect of the continuous trailing-edge variable camber on the drag polar of these two kinds of transonic airfoils is investigated and analyzed according to the optimization results. The results of the optimization design show that the aerodynamic characteristics of the shock-free airfoil are better than those of the supercritical airfoil at the design point, but the robustness is worse. Besides, when the lift coefficient is lower than the design lift coefficient, the drag polar characteristic of the shock-free airfoil can be improved greatly with the continuous trailing-edge variable camber applied, thus the drag coefficient is reduced by up to 3.9%. However, the situation of supercritical airfoil is different. The results also demonstrate that when the lift coefficient exceeds the design lift coefficient, the continuous trailing-edge variable camber method can significantly improve the drag polar performance of both airfoils with the drag coefficients of them being reduced by 2.4%-18.1% and 1.7%-13.2% respectively.
GUO Tongbiao , BAI Junqiang , YANG Tihao . Influence of continuous trailing-edge variable camber on aerodynamic characteristics of transonic airfoils[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(2) : 513 -521 . DOI: 10.7527/S1000-6893.2015.0161
[1] URNES J, NGUYEN N, IPPOLITO C, et al. A mission adaptive variable camber flap control system to optimize high lift and cruise lift-to-drag ratios of future n+3 transport aircraft[C]//51th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2013:1-7.
[2] JAMES M, URNES J, CHARLES M. Control system design for a variable camber continuous trailing edge flap system on an elastic wing[C]//55th AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2014:1-13.
[3] RENEAUX J. Overview on drag reduction technologies for civil transport aircraft[C]//European Congress on Computational Methods in Applied Sciences and Engineering. Jyväskylä:ECCOMAS, 2004:7-24.
[4] KOTA S. Shape control of adaptive structures using compliant mechanisms:AFRLSR-BL-TR-00-0125[R]. Ann Arbor:Department of Mechanical Engineering and Applied Mechanics, 2000.
[5] KERR-JIA L, KOTA S. Design of compliant mechanisms for morphing stricture shapes[J]. Journal of Intelligent Material Systems and Structures, 2003, 14(6):379-391.
[6] DI-MATTEO N, GUO S, AHMED S, et al. Design and analysis of a morphing flap structure for high lift wing[C]//51th AIAA/ASME/ASCE/AHS/-ASC Structures, Structural Dynamics, and Material Conference. Reston:AIAA, 2010:4-12.
[7] YOKOZEKI T, SUGIURA A. Development of variable camber morphing airfoil using corrugated structure[J]. Journal of Aircraft, 2014, 51(3):1023-1029.
[8] YOKOZEKI T, SUGIURA A. Development and wind tunnel test of variable camber morphing wing[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. Reston:AIAA, 2014:1-13.
[9] KAUL K, NGUYEN N. Drag optimization study of variable camber continuous trailing tdge flap using overflow[C]//32nd AIAA Applied Aerodynamics Conference. Reston:AIAA, 2014:6-16.
[10] 杨智春, 解江. 柔性后缘自适应机翼的概念设计[J]. 航空学报, 2009, 30(6):1028-1034. YANG Z C, XIE J. Concept design of adaptive wing with flexible trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):1028-1034(in Chinese).
[11] 杨智春, 党会学, 解江. 基于动网格技术的柔性后缘自适应机翼气动特性分析[J]. 应用力学学报, 2009, 26(3):548-554. YANG Z C, DANG H X, XIE J. Aerodynamic characteristics of flexible trailing edge adaptive wing by unstructured dynamic meshes[J]. Chinese Journal of Applied Mechanics, 2009, 26(3):548-554(in Chinese).
[12] 陈钱, 白鹏, 尹维龙, 等. 可连续光滑偏转后缘的变弯度翼型气动特性分析[J]. 空气动力学报. 2010, 28(1):46-53. CHEN Q, BAI P, YIN W L, et al. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J]. Acta Aerodynamica Sinica, 2010, 28(1):46-53(in Chinese).
[13] 孔博, 王福新, 周涛. 基于环量控制无缝变弯度翼型的气动设计[J]. 空气动力学报, 2013, 31(5):583-586. KONG B, WANG F X, ZHOU T. The aerodynamic design of seamlessly camber-variable airfoil based on circulation control[J]. Acta Aerodynamica Sinica, 2013, 31(5):583-586(in Chinese).
[14] 黄杰, 葛文杰, 杨方. 实现机翼前缘形状连续变化柔性机构的拓扑优化[J]. 航空学报, 2007, 28(4):988-992. HUANG J, GE W J, YANG F. Topology optimization of the compliant mechanism for shape change of airfoil leading edge[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4):988-992(in Chinese).
[15] 赵飞, 葛文杰, 张龙. 某无人机柔性机翼后缘变形机构的拓扑优化[J]. 机械设计, 2009, 26(8):19-22. ZHAO F, GE W J, ZHANG L. Topological optimization on the deformation mechanism of flexible trailing edge of certain pilot-less aircraft[J]. Journal of Machine Design, 2009, 26(8):19-22(in Chinese).
[16] 王婷, 王帮峰, 芦吉云, 等. 一种拓扑优化方法在机翼可变后缘中的研究[J]. 机械科学与技术, 2011, 30(1):1660-1663. WANG T, WANG B F, LU J Y, et al. The study of a topological optimization method on the adaptive wing's trailing edge[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(1):1660-1663(in Chinese).
[17] 尹维龙, 石庆华, 田冬奎. 变体后缘的索网传动机构设计与分析[J]. 航空学报, 2013, 34(8):1824-1831. YIN W L, SHI Q H, TIAN D K. Design and analysis of transmission mechanism with cable networks for morphing trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1824-1831(in Chinese).
[18] 刘卫东, 丁倩, 朱华, 等. 基于超声电机的变弯度翼的驱动与集成[J]. 振动、测试与诊断. 2013, 33(5):856-861. LIU W D, DING Q, ZHU H, et al. Drive and integration techniques of variable camber wing based on ultrasonic motors[J]. Journal of Vibration, Measurement and Diagnosis, 2013, 33(5):856-861(in Chinese).
[19] SANTINI G M. Wing variable camber trailing edge tip:USA. US8844879[P]. 2014-09-30.
[20] 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10):2311-2320. HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, 29(10):2311-2320(in Chinese).
[21] COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE 2822-pressure distributions, and boundary layer and wake measurements:AGARD AR-138[R]. Neuilly Sur Seine, France:AGARD, 1979.
[22] PAINCHAUD-OUELLET S, TRIBES C, TREPANIER J Y, et al. Airfoil shape optimization using a nonuniform rational B-splines parameterization under thickness constraint[J]. AIAA Journal, 2006, 44(10):2170-2178.
[23] 张宇飞. 基于先进CFD方法的民用客机气动优化设计[D]. 北京:清华大学, 2010. ZHANG Y F. Aerodynamic optimization of civil aircraft design based on advanced computational fluid dynamics[D]. Beijing:Tsinghua University, 2010(in Chinese).
[24] 杨昆淼, 张卫民, 王斌. 基于机翼气动设计准则的超临界机翼气动优化研究[J]. 航空学报, 2013, 34(2):263-272. YANG K M, ZHANG W M, WANG B. Research of super-critical wing optimization based on aerodynamic design principle of wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):263-272(in Chinese).
/
〈 | 〉 |