Solid Mechanics and Vehicle Conceptual Design

Rate-dependent property of propellant and inhibitor interface debonding

  • YU Jiaquan ,
  • XU Jinsheng ,
  • CHEN Xiong ,
  • ZHOU Changsheng ,
  • JIA Deng ,
  • LI Hongwen
Expand
  • 1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Jinxi Industries Group Co. Ltd., Taiyuan 030027, China

Received date: 2015-01-08

  Revised date: 2015-03-26

  Online published: 2015-04-27

Supported by

Natural Science Foundation of Jiangsu Province (BK20140772)

Abstract

The interfacial property between propellant and inhibitor has a significant impact on the working stability of the solid rocket motor (SRM). In order to investigate the debonding property of the interface between the composite modified double-base (CMDB) propellant and the ethylene-propylene-diene monomer (EPDM) inhibitor at different loading rates, an test research is conducted using double cantilever beam (DCB) specimen and the load-displacement curves are obtained. Meanwhile, an interface model is proposed based on the rate-dependent cohesive zone model (CZM) and the relevant parameters are inversed by the Hooke-Jeeves optimization algorithm. The model's accuracy is verified by comparing the multistage loading experiment curve with the simulation curve. The result shows that the change trend is consistent and the tolerance is less than 15%, which certificates that the interface model has some reference values for the debonding research in the solid rocket motor.

Cite this article

YU Jiaquan , XU Jinsheng , CHEN Xiong , ZHOU Changsheng , JIA Deng , LI Hongwen . Rate-dependent property of propellant and inhibitor interface debonding[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(12) : 3861 -3867 . DOI: 10.7527/S1000-6893.2015.0089

References

[1] Sui Y T, Yang X G. Interface debond analysis and detection method in SRM[J]. Winged Missiles Journal, 2001(1):43-46(in Chinese).隋玉堂,杨兴根.火箭发动机界面脱粘分析及检测新方法[J].飞航导弹, 2001(1):43-46.
[2] Yin H L, Wang Q H. Factors of influencing the bond characteristics at interface[J]. Journal of Solid Rocket Technology, 1998, 21(3):40-46(in Chinese).尹华丽,王清和.界面粘接性能的影响因素[J].固体火箭技术, 1998, 21(3):40-46.
[3] He G Q, Xiao Y M, Chen H, et al. Experiment on the factors affecting the debond propagation in solid rocket motors[J]. Journal of Solid Rocket Technology, 1998, 21(1):16-19(in Chinese).何国强,肖育民,陈宏,等.装药燃烧增压过程中脱粘扩展条件实验分析[J].固体火箭技术, 1998, 21(1):16-19.
[4] Xing Y G, Wang L B, Dong K H, et al. Factors influence propagation of debond in burning propellant[J]. Journal of Propulsion Technology, 2001, 22(1):77-80(in Chinese).邢耀国,王立波,董可海,等.燃烧条件下影响推进剂脱粘面扩展的因素[J].推进技术, 2001, 22(1):77-80.
[5] Meng S Y, Tang G J, Lei Y J. Stability analysis of the interfacial debonded crack between propellant and liner of solid rocket motor grains[J]. Journal of Solid Rocket Technology, 2004, 27(1):46-49(in Chinese).蒙上阳,唐国金,雷勇军.固体发动机包覆层与推进剂界面脱粘裂纹稳定性分析[J].固体火箭技术, 2004, 27(1):46-49.
[6] Yuan D C, Lei Y J, Tang G J, et al. Analysis of the interfacial crack in debonded layer of long term storage solid motor grain[J]. Journal of National University of Defense Technology, 2006, 28(3):19-23(in Chinese).袁端才,雷勇军,唐国金,等.长期贮存的固体发动机药柱脱粘界面裂纹分析[J].国防科技大学学报, 2006, 28(3):19-23.
[7] Zhou Q C, Ju Y T, Wei Z, et al. Cohesive zone modeling of propellant and insulation interface debonding[J]. The Journal of Adhesion, 2014, 90(3):230-251.
[8] Niu R M, Zhou Q C, Chen X, et al. Experimental and numerical analysis of mode Ⅱ fracture between propellant and insulation[J]. International Journal of Adhesion and Adhesives, 2014, 52:1-10.
[9] ISO 15024:2001(E). Fibre-reinforced plastic composites-determination of mode I interlaminar fracture toughness, GIc, for unidirectionally reinforced materials[S]. Switzerland:The International Orgnization for Standardization, 2001.
[10] Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2):100-104.
[11] Needleman A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3):525-531.
[12] Jin Z H, Sun C T. Cohesive zone modeling of interface fracture in elastic bi-materials[J]. Engineering Fracture Mechanics, 2005, 72(12):1805-1817.
[13] Yao Y, Huang Z X. A surface-energy equivalent cohesive crack model based on atomic cohesive force[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1796-1801(in Chinese).姚寅,黄再兴.基于原子内聚力与表面能等效的内聚裂纹模型[J].航空学报, 2010, 31(9):1796-1801.
[14] Li B, Li Y Z, Hu B H. A new interfacial element and finite element model for composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1370-1378(in Chinese).李彪,李亚智,胡博海.一种层压复合材料组合界面单元及有限元模型[J].航空学报, 2013, 34(6):1370-1378.
[15] Marzi S, Hesebeck O, Brede M, et al. A rate-dependent cohesive zone model for adhesively bonded joints loaded in mode I[J]. Journal of Adhesion Science and Technology, 2009, 23(6):881-898.
[16] Makhecha D P, Kapania R K, Johnson E R, et al. Rate-dependent cohesive zone modeling of unstable crack growth in an epoxy adhesive[J]. Mechanics of Advanced Materials and Structures, 2009, 16(1):12-19.
[17] Xu C, Siegmund T, Ramani K. Rate-dependent crack growth in adhesives:I. Modeling approach[J]. International Journal of Adhesion and Adhesives, 2003, 23(1):9-13.
[18] Xu C, Siegmund T, Ramani K. Rate-dependent crack growth in adhesives Ⅱ. Experiments and analysis[J]. International Journal of Adhesion and Adhesives, 2003, 23(1):15-22.
[19] Needleman A. An analysis of decohesion along an imperfect interface[J]. International Journal of Fracture, 1990, 42(1):21-40.
[20] Hooke R, Jeeves T A. "Direct search" solution of numerical and statistical problems[J]. Journal of the ACM (JACM), 1961, 8(2):212-229.

Outlines

/