Review

Research progress of damage estimation for turbine blades based on infrared thermographic technology

  • GUO Wei ,
  • DONG Lihong ,
  • WANG Huipeng ,
  • XU Binshi
Expand
  • Science and Technology on Remanufacturing Laboratory, Academy of Armored Forces Engineering, Beijing 100072, China

Received date: 2015-01-19

  Revised date: 2015-04-07

  Online published: 2015-04-13

Supported by

National Basic Research Program of China(2011CB013401)

Abstract

As a new non-destructive testing technology with characteristics of high efficiency, non-pollution and easy to operate, active infrared thermography is suitable for surface and subsurface defect detecting, therefore it has some advantages for damage evaluation of thin-walled parts such as turbine blades. Currently, damage evaluation research for high-temperature turbine blades based on active infrared thermography mainly focuse on four aspects:detection of fatigue crack in blade base material, testing of thermal grown oxide in the interface, thickness measurement and debonding detection of thermal barrier coatings. However, there are some problems and difficulties for existing research, such as the thermal excitation theory is still imperfect, the recognition accuracy of thermal infrared imager is not high enough, and processing methods of thermal images need to be improved. With the resolve of these theoretical and technical problems, active infrared thermography showing two development trends:from artificial to automatically recognition, and from quantitative detection to qualitative detection of defects. Overall, this technology has a large potential on damage evaluation of turbine blades in the future.

Cite this article

GUO Wei , DONG Lihong , WANG Huipeng , XU Binshi . Research progress of damage estimation for turbine blades based on infrared thermographic technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(2) : 429 -436 . DOI: 10.7527/S1000-6893.2015.0098

References

[1] 刘纯波, 林锋, 蒋显亮. 热障涂层的研究现状与发展趋势[J]. 中国有色金属学报, 2007, 17(1):1-13. LIU C B, LIN F, JIANG X L. Current state and future development of thermal barrier coating[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(1):1-13(in Chinese).
[2] 陈炳贻. 热障涂层技术的发展[J]. 航空科学技术, 2005(2):37-39. CHEN B Y. Development of thermal barrier coating technologies[J]. Aeronautical Science and Technology, 2005(2):37-39(in Chinese).
[3] 李洋, 佟文伟, 张开阔, 等. 发动机高压涡轮导向叶片裂纹失效分析[C]//第十五届中国科协年会第13分会场:航空发动机设计、制造与应用技术研讨会论文集. 北京:中国科学技术协会, 2013:1-6. LI Y, TONG W W, ZHANG K K, et al. Fracture analysis of aero-engine high pressure tubine blade[C]//The 13th Breakout of the Fifteenth Session of China Association Annual Meeting:Aircraft Engine Design, Manufacture and Application of Technology Symposium. Beijing:China Association for Science and Technology Institute, 2013:1-6(in Chinese).
[4] 魏铮, 胡捷. 热障涂层失效机制和寿命预测研究概述[J]. 装备机械, 2013(4):2-6. WEI Z, HU J. Overview of research on failure mechanism and life prediction of thermal barrier coatings[J]. Equipment Machinery, 2013(4):2-6(in Chinese).
[5] MADHWAL M, JORDAN E H, GELL M. Failure mechanisms of dense vertically-cracked thermal barrier coatings[J]. Materials Science and Engineering A, 2004, 384(1-2):151-161.
[6] FAVRO L D, HAN X Y, ZHONG O Y. Thermosonic imaging of cracks and delaminations[J]. Progress in Natural Science, 2001, 10:133-136.
[7] 赵扬, 马致远, 陈建伟. 热障涂层失效的无损检测与评价研究进展[J]. 河北科技大学学报, 2013, 34(6):494-500. ZHAO Y, MA Z Y, CHEN J W. Research progress on nondestructive testing and evaluation of TBC failure[J]. Journal of Hebei University of Science and Technology, 2013, 34(6):494-500(in Chinese).
[8] 林杰威, 张俊红, 张桂昌, 等. 基于连续非线性损伤的航空发动机叶片疲劳研究[J]. 机械工程学报, 2010, 46(18):66-70. LIN J W, ZHANG J H, ZHANG G C, et al. Study on fatigue damage of aero-engine blade based on non-linear continuum damage model[J]. Journal of Mechanical Engineering, 2010, 46(18):66-70(in Chinese).
[9] WILSON J, TIAN G Y, ABIDIN L Z. Pulsed eddy current thermography:system development and evaluation[J]. Non-Destructive Testing and Condition Monitoring, 2010, 52(2):87-90.
[10] 朱建国, 谢惠民, 刘战伟. 热障涂层力学性能的实验测试方法研究进展[J]. 力学学报, 2013, 45(1):45-60. ZHU J G, XIE H M, LIU Z W. Research progress on the experimental measurement methods of mechanical properties of thermal coatings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1):45-60(in Chinese).
[11] MORI M, NOVAK L, SEKAVCNIK M. Measurements on rotating blades using IR thermography[J]. Experimental Thermal and Fluid Science, 2007, 32(2):387-396.
[12] 宋凯, 刘堂先, 李来平, 等. 航空发动机涡轮叶片裂纹的阵列涡流检测仿真[J]. 航空学报, 2014, 35(8):2355-2363. SONG K, LIU T X, LI L P, et al. Simulation on aero-engine turbine blade cracks detection based on eddy current array[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2355-2363(in Chinese).
[13] 何箐, 吴鹏, 汪瑞军, 等. 模拟服役环境下热障涂层损伤趋势的红外原位检测技术[J]. 中国表面工程, 2013, 26(4):20-26. HE J, WU P, WANG R J, et al. Infrared thermography in situ inspection for damage trend of TBCs in simulated service environment[J]. China Surface Engineering, 2013, 26(4):20-26(in Chinese).
[14] ZHANG C X, ZHOU C G, GONG S K. Evaluation of thermal barrier coating exposed to different oxygen partial presure environments by impedance spectroscopy[J]. Surface and Coatings Technology, 2006, 201(2):446-451.
[15] 谢兴盛, 颜芳, 陆佳佳, 等. 红外热波无损检测技术在涡轮叶片探伤中的应用[J]. 红外技术, 2007, 29(9):552-555. XIE X S, YAN F, LU J J, et al. The applications of thermal wave NDT in turbine blades testing[J]. Infrared Technology, 2007, 29(9):552-555(in Chinese).
[16] PATEL P M, ALMOND D P. Thermal wave testing of plasma sprayed coatings and a comparison of the effects of coating microstructure on the propagation of thermal and ultrasonic waves[J]. Journal of Materials Science, 1998, 20(3):955-966.
[17] BENTO A C, BROWN S R, ALMOND D P. Thermal wave nondestructive thickness measurements of hydroxyapatite coatings applied to prosthetic hip stems[J]. Journal of Materials Science, 1995, 6(6):335-339.
[18] SARGENT J P, ALMOND D P, GATHERCOLE N. Thermal wave measurement of wet paint film thickness[J]. Journal of Materials Science, 2006, 41(2):333-339.
[19] FRANKE B, SOHN Y H, CHEN X. Monitoring damage evolution in thermal barrier coatings with thermal wave imaging[J]. Surface and Coatings Technology, 2005, 200(5):1292-1297.
[20] SHEPARD S M, HOU Y L, LHOTA J R. Thermographic measurement of thermal barrier coating thickness[C]//Proceedings of SPIE 5782, Thermosense XXVⅡ, 2005:407-410.
[21] LIU H N, SAKAMOTO M, KISHI K. Detection of defects in thermal barrier coatings by thermography analyses[J]. Materials Transactions, 2003, 44(9):1845-1850.
[22] 郭兴旺, 丁蒙蒙. 热障涂层厚度及厚度不均热无损检测的数值模拟[J]. 航空学报, 2010, 31(1):198-203. GUO X W, DING M M. Simulation of thermal NDT of thickness and its unevenness of thermal barrier coating[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):198-203(in Chinese).
[23] IGNATOVICH S R, BOURAOU N I. The reliability of detecting cracks during nondestructive testing of aircraft components[J]. Russian Journal of Nondestructive Testing, 2013, 49(5):294-300.
[24] BENDADA A, SFARRA S, GENEST M, et al. How to reveal subsurface defects in Kevlar® composite materials after an impact loading using infrared vision and optical NDT techniques[J]. Engineering Fracture Mechanics, 2013, 108:195-208.
[25] 刘颖韬, 郭广平, 杨党纲, 等. 脉冲热像法在航空复合材料构件无损检测中的应用[J]. 航空材料学报, 2012, 32(1):72-77. LIU Y T, GUO G P, YANG D G, et al. Pulsed thermography of composite components used in aerospace applications[J]. Journal of Aeronautical Materials, 2012, 32(1):72-77(in Chinese).
[26] 李果. TBC热障涂层热循环的红外监测[D]. 北京:首都师范大学, 2013:2-14. LI G. Infrared monitoring of thermally cycled TBCs[D]. Beijing:Capital Normal University, 2013:2-14(in Chinese).
[27] MARINETTI S, ROBBA D, CERNUSCHI F. Thermographic inspection of TBC coated gas tubine blades:Discrimination between coating over-thiknesses and adhesion defects[J]. Infrared Physics & Technology, 2007, 49(3):281-285.
[28] BISION P G, MARINETTI S, GRINZATO E. Inspecting thermal barrier coatings by IR thermography[C]//Proceedings of SPIE 5073,Thermosense XXV, 2003:318-327.
[29] YANG D J, CHOI C J. Evaluation method of gas turbine blades covering integrity by IR camera[J]. International Journal of Modern Physics, 2006, 20(25):4329-4334.
[30] MARINETTI S, VAVILOV V, BISON P G, et al. Quantitative infrared thermographic nondestructive testing of thermal barrier coatings[J]. Materials Evaluation, 2003, 61(6):773-780.
[31] 曹善友, 郭兴旺. 超声振动红外热像法的影响因素[J]. 无损检测, 2010, 32(10):776-784. CAO S Y, GUO X W. Affecting factors of ultrasonic vibrothermography[J]. Nondestructive Testing, 2010, 32(10):776-784(in Chinese).
[32] 郭兴旺, 丁蒙蒙. 热障涂层红外热无损检测的建模和有限元分析[J]. 北京航空航天大学学报, 2009, 35(2):174-178. GUO X W, DING M M. Modeling and finite element analysis of thermal barrier coatings in IR NDT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2):174-178(in Chinese).
[33] STEPHEN D H. First measurements from a new broadband vibrothermography measurement system[C]//Review of Progress in Quantitative Nondestructive Evaluation, 2009.
[34] BODNAR J L, NICOLAS J L, CANDORE J C, et al. Non-destructive testing by infrared thermography under random excitation and ARMA analysis[J]. International Journal of Thermophysics, 2012, 33(10-11):2011-2015.
[35] NEWAZ G, CHEN X Q. Progressive damage assessment in thermal barrier coatings using thermal wave imaging technique[J]. Surface and Coatings Technology, 2005, 190(1):7-14.
[36] 张志强, 赵怀慈, 赵大威, 等. 基于SVD算法的红外热波无损检测方法研究[J]. 机械设计与制造, 2012(4):53-55. ZHANG Z Q, ZHAO H C, ZHAO D W, et al. Research of infrared thermal wave nondestructive testing method based on SVD algorithm[J]. Machinery Design & Manufacture, 2012(4):53-55(in Chinese).
[37] 缪鹏程, 米小兵, 张淑仪, 等. 超声红外热像检测中缺陷发热的瞬态温度场的有限元分析[J]. 南京大学学报(自然科学), 2005, 41(1):98-104. MIAO P C, MI X B, ZHANG S Y, et al. FEM analysis of transient temperature fields of samples with defects during ultrasonic pulse excitation[J]. Journal of Nanjing University(Natural Sciences), 2005, 41(1):98-104(in Chinese).
[38] BOLU G, GACHAGAN A, PIERCE G, et al. Reliable thermosonic inspection of aero engine turbine blades[J]. Insight, 2010, 52(9):488-493.

Outlines

/