ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research on angular vibration calibration devices
Received date: 2014-03-24
Revised date: 2014-05-26
Online published: 2015-03-31
Supported by
National Defense Basic Research Program
In order to improve the evaluating capabilities of dynamic properties for inertial sensors, by loading standard sine wave angular vibration and measuring precisely the angular vibration process, the angular vibration sensor is calibrated. Based on the different frequency specialties, the calibration device is divided to high-frequency and low-frequency two parts. In low-frequency calibration device, an air bearing and brushless direct current torque motor is used. In high-frequency calibration device, a precise air bearing of light hollow cuptype and electromagnetic ariving structure of frame type is designed. Using precise angular encoder measure low-frequency angular vibration and using diffraction grating heterodyne laser interferometer measure high-frequency angular vibration, respectively. A primary angular vibration calibration device with frequency range of 0.25 Hz to 550 Hz, angular acceleration range of 0.1 rad/s2 to 1 760 rad/s2 and angular velocity wave-distortion below 2% is successfully developed. Compared with the angular vibration calibration device in the Physikalisch-Technische Bundesanstalt, this equipment could provide more load bearing, and could be widely used in dynamic properties tests and evaluating of inertial sensors.
XUE Jingfeng , PENG jun , LI Xinliang , ZHAO Weiqian . Research on angular vibration calibration devices[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(3) : 962 -969 . DOI: 10.7527/S1000-6893.2014.0110
[1] Huo H Q, Ma M J, Li Y P, et al. The application of MHD angular rate sensor in aerospace[J]. Vacuum and Cryogenics, 2011, 17(2): 114-120 (in Chinese). 霍红庆, 马勉军, 李云鹏, 等. MHD角速度传感器在航天任务中的应用[J]. 真空与低温, 2011, 17(2): 114-120.
[2] Song H F, Deng H, Zhang R, et al. Measurement model for attitude of Gyro at small angle random to and fro vibration[J]. Acta Armamentarii, 2008, 29(4): 411-414 (in Chinese). 宋海峰, 邓浩, 张蓉, 等. 小角度随机往复振动条件下陀螺姿态测量研究[J]. 兵工学报, 2008, 29(4): 411-414.
[3] Li J L, Fang J C. The improved static error model of micromechanical gyroscope and calibration[J]. Journal of Astronautics, 2007, 28(6): 1614-1618 (in Chinese). 李建利, 房建成. 改进的MEMS陀螺静态误差模型及标定方法[J]. 宇航学报, 2007, 28(6): 1614-1618.
[4] Wu X S, Chen W Y. Review on angular accelerometer development [J]. Journal of Chinese Inertial Technology, 2007, 15(4): 458-463 (in Chinese). 吴校生, 陈文元. 角加速度计发展综述[J]. 中国惯性技术学报, 2007, 15(4): 458-463.
[5] Hulsing R. MEMS inertial rate and acceleration sensor[J]. Aerospace and Electronic Systems Magazine, 1998, 13(11): 17-23.
[6] Zhou J K, Liu H M. A discussion on some key points in developing high-frequency angular vibration tables[J]. Aviation Precision Manufacturing Technology, 2001, 37(2): 36-39 (in Chinese). 周纪琨, 刘红梅. 高频角振动台中某些特殊问题的研究[J]. 航空精密制造技术, 2001, 37(2): 36-39.
[7] Peng J, He Q, Xue J F, et al. Low frequency standard angular exciter[J]. Aviation Metrology & Measurement Technology, 2005, 25(6): 46-48 (in Chinese). 彭军, 何群, 薛景锋, 等. 低频标准角振动台[J]. 计测技术, 2005, 25(6): 46-48.
[8] Cheung W, Licht T. Progress in development of calibration systems for angular vibration pickups[C]//Proceedings of Fundamental and Applied Metrology. Budapest: XIX IMEKO World Congress, 2009.
[9] Cheung W, Park S, Kwon H, et al. Development of electrodynamic angular vibration exciter for calibration of angular vibration pickups[C]//Proceedings of the 37th International Congress and Exhibition on Noise Control Engineering. Washington, D.C.: International Institute of Noise-control Engineering, 2008.
[10] ISO 16063-15 Methods for the calibration of vibration and shock transducers—Part 15: Primary calibration by laser interferometry[S]. 2006.
[11] Teaubner A, Von Martens H J. Measurement of angular accelerations, angular velocities and rotational angles by grating interferometry [J]. Measurement, 1998, 24(1): 21-32.
[12] Smutny L, Tuma J, Farana R. Calibration of sensors for angular vibration measurements[C]//Proceedings of Metrology for a Sustainable Development. Budapest: XIX IMEKO World Congress, 2006.
[13] Sun H W, Fang J C, Sheng W. Calibration compensation method for micro inertial measurement unit based on MEMS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(4): 439-442 (in Chinese). 孙宏伟, 房建成, 盛蔚. 一种基于MEME的微惯性测量单元标定补偿方法[J]. 北京航空航天大学学报, 2008, 34(4): 439-442.
[14] Xue J F, Shao X H. Electric angular vibration table: China, ZL200610099077.4 [P]. 2007-01-24 (in Chinese). 薛景锋, 邵新慧. 电动式角振动台: 中国, ZL200610099077.4[P]. 2007-01-24.
[15] Xue J F, Shao X H, Peng J. Non-motor electric angular vibration table: China, ZL200610099078.9 [P]. 2008-07-23 (in Chinese). 薛景锋, 邵新慧, 彭军. 非电机式电动式角振动台: 中国, ZL200610099078.9 [P]. 2008-07-23.
[16] Xue J F, Zhao W Q, Shao X H. High-frequency angular vibration exciter design and key technology[J]. Journal of Chinese Inertial Technology, 2013, 21(6): 840-844 (in Chinese). 薛景锋, 赵维谦, 邵新慧. 高频角振动激励源设计与关键技术[J]. 中国惯性技术学报, 2013, 21(6): 840-844.
[17] Zhang L, Peng J. Angular vibration measurement using grating and laser interferometer[C]//Proceedings of SPIE. Bellingham, WA : SPIE, 2006: 63451L-1-63451L-7.
[18] Li X L, Zhang D Z, Xue J F, et al. The measurement method and device of angular vibration by laser interferometry: China, CN100489470C [P]. 2009-05-20 (in Chinese). 李新良, 张大治, 薛景锋, 等. 角振动激光干涉测量方法及装置: 中国, CN100489470C [P]. 2009-05-20.
[19] Xue J F, Zhang D Z, Li X L, et al. High-frequency angular vibration calibration using the mirror assembly diffraction grating heterodyne laser interferometer[C]//Proceedings of SPIE. Bellingham, WA : SPIE, 2014: 928219-1-928219-6.
[20] Bai W P, Yang J F, Han P F, et al. Research on calibration of dynamic torque loading device[J]. Journal of Vibration, Measurement and Diagnosis, 2007, 27(4): 316-319 (in Chinese). 白文普, 杨俊峰, 韩佩富, 等. 动态扭矩加载器的校定研究[J]. 振动、测试与诊断, 2007, 27(4): 316-319.
/
〈 | 〉 |