ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A hybrid optimization approach for rapid endo-atmospheric ascent trajectory planning of launch vehicles
Received date: 2014-11-13
Revised date: 2014-12-22
Online published: 2015-03-10
Supported by
The Open National Defense Key Disciplines Laboratory of Exploration of Deep Space Landing and Return Control Technology, Harbin Institute of Technology (HIT.KLOF.2013.079); The Fundamental Research Funds for the Central Universities (HIT.NSRIF.2015037)
A hybrid optimization approach is proposed for the rapid optimal endo-atmospheric ascent trajectory planning of launch vehicles, combined with the indirect and direct methods for solving optimal control problems. Firstly, based on the first order necessary conditions, the method transforms the three dimensional optimal endo-atmospheric ascent problem into Hamiltonian two point boundary value problem. Then, the Gauss pseudo-spectral method of direct methods is applied to solve the problem, taking advantage of fast convergence rate, with less nodes and higher precision than other traditional methods. Last, vacuum analytical initial solution technology and density homotopy technology are also introduced to overcome the difficulties of initial guesses and convergence. Simulation results show that the hybrid optimization algorithm can accurately and rapidly solve the problem of optimal endo-atmospheric ascent trajectory, with better precision and efficiency than the indirect method. The proposed algorithm also can be applied to on-line trajectory planning and guidance of launch vehicles.
CUI Naigang , HUANG Panxing , LU Fei , HUANG Rong , WEI Changzhu . A hybrid optimization approach for rapid endo-atmospheric ascent trajectory planning of launch vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(6) : 1915 -1923 . DOI: 10.7527/S1000-6893.2015.0068
[1] Hanson J M, Shrader M W, Cruzen C A. Ascent guidance comparisons[J]. The Journal of the Astronautical Science, 1995, 43(3): 307-326.
[2] Greg A, Dukeman G. Atmospheric ascent guidance for rocket-powered launch vehicles, AIAA-2002-4559[R]. Reston: AIAA, 2002.
[3] Leung M S K, Calise A J. Hybrid approach to near-optimal launch vehicle guidance[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(5): 881-888.
[4] Calise A J, Brandt N. Further improvements to a hybrid method for launch vehicle ascent trajectory optimization, AIAA-2000-4261[R]. Reston: AIAA, 2000.
[5] Calise A J, Brandt N. Generation of launch vehicle abort trajectories using a hybrid optimization method[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 930-937.
[6] Johnson E N, Calise A J, Curry M D. Adaptive guidance and control for autonomous hypersonic vehicles[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 725-737.
[7] Ding H B, Cao Y, Tong W P, et al. Ascent trajectory optimization and fast-reconstruction for suborbital launch vehicle[J]. Journal of Astronautics, 2009, 30(3): 877-882 (in Chinese). 丁洪波, 曹渊, 佟卫平, 等. 亚轨道飞行器上升段轨迹优化与快速重规划[J]. 宇航学报, 2009, 30(3): 877-882.
[8] Yan H J, Tang S, Pan B F. Rapid ascent trajectory generation of suborbital launch vehicle[J]. Science Technology and Engineering, 2011, 11(10): 2266-2270 (in Chinese). 闫海江, 唐硕, 泮斌峰. 亚轨道飞行器上升段轨迹快速生成方法研究[J]. 科学技术与工程, 2011, 11(10): 2266-2270.
[9] Lu P, Pan B F. Highly constrained optimal launch ascent guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(2): 404-414.
[10] Oscar J, Murillo J, Lu P. Fast ascent trajectory optimization for hypersonic air-breathing vehicles, AIAA-2010-8173[R]. Reston: AIAA, 2010.
[11] Lu P, Sun H, Tsai B. Closed-loop endo-atmospheric ascent guidance[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(2): 283-294.
[12] Gath P F, Calise A J. Optimization of launch vehicle ascent trajectories with path constraints and coast arcs[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 296-304.
[13] Huang G Q, Lu Y P, Nan Y. A survey of numerical algorithms for trajectory optimization of flight vehicles[J]. Scientia Sinica Technologica, 2012, 42(9): 1016-1036 (in Chinese). 黄国强, 陆宇平, 南英. 飞行器轨迹优化数值算法综述[J]. 中国科学: 技术科学, 2012, 42(9): 1016-1036.
[14] Benson D. A Gauss pseudospectral transcription for optimal control[D]. Massachusetts: Massachusetts Institute of Technology, 2005.
[15] Chen Q, Wang Z Y, Chang S J. Rapid optimization of gliding trajectory based on Gauss pseudospectral method[J]. Journal of Ballistics, 2014, 26(2): 17-21 (in Chinese). 陈琦, 王中原, 常思江. 基于Gauss伪谱法的滑翔弹道快速优化[J]. 弹道学报, 2014, 26(2): 17-21.
[16] Li Y Y, Shi J B, Zhang X M, et al. Trajectory design for reusable launch vehicles based on pseudo-spectral method[J]. Missiles and Space Vehicles, 2013, 4(1): 5-8 (in Chinese). 李永远, 时剑波, 张雪梅, 等. 基于伪谱方法的可重复使用运载器轨迹设计[J]. 导弹与航天运载技术, 2013, 4(1): 5-8.
[17] Bai R G, Sun X, Chen Q S, et al. Multiple UAV cooperative trajectory planning based on Gauss pseudospectral method[J]. Journal of Astronautics, 2014, 35(9): 1022-1029 (in Chinese). 白瑞光, 孙鑫, 陈秋双, 等. 基于Gauss伪谱法的多UAV协同航迹规划[J]. 宇航学报, 2014, 35(9): 1022-1029.
[18] Yang X X, Zhang W H. Midcourse guidance law optimal design for air-to-air missiles based on Gauss pseudospectral method[J]. Journal of National University of Defense Technology, 2013, 35(1): 28-32 (in Chinese). 杨希祥, 张为华. 基于Gauss 伪谱法的空空导弹最优中制导律设计[J]. 国防科技大学学报, 2013, 35(1): 28-32.
[19] Wang L X, Leng S, Wang J H. The design of control law of transition zone of missile based on Gauss pseudospectral method[J]. Control Engineering of China, 2013, 20(5): 906-909 (in Chinese). 汪立新, 冷杉, 王建华. 基于Gauss伪谱法的导弹过渡段控制律设计[J]. 控制工程, 2013, 20(5): 906-909.
[20] Calise A J, Nahum M E, Lee S J. Design and evaluation of a three-dimensional optimal ascent guidance algorithm[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6): 867-875.
/
〈 | 〉 |