ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Rolling stability analysis of missile with strake wing
Received date: 2014-11-13
Revised date: 2014-12-30
Online published: 2015-02-11
Supported by
Funding of Jiangsu Innovation Program for Graduate Education (CXLX12_0134); The Fundamental Research Funds for the Central Universities
In order to study the nonlinear free rolling motion and rolling stability of a missile mounted with strake wing, different methods are used including the theoretical method, the dynamic force tests and the free-to-roll measurement. The free rolling motion and the changing of the rolling stability have been studied from the angle of attack(AOA) from 0° to 60° under the low speed free stream condition. At AOA of 10° the rolling statically stable positions are where the model looks like "+" shape and the model can keep stable at these positions after being released rolling free. When the angle of attack is higher than 20°, the rolling statically stable positions have changed to where the model is "×" shaped. And at AOA of 20° the model can keep rolling stable at the position where the model is "×" shaped. When the AOA is higher than 30°, the model generates the limit cycle oscillation itself at the positions where the model is "×" shaped. When the AOA reaches 60°, the rolling motion becomes spinning after the limit cycle oscillation diverges. The results indicate that the rolling motions are determined by the static and dynamic stability of rolling moment.
GENG Xi , SHI Zhiwei , CHENG Keming , GONG Zheng , LIU Chao . Rolling stability analysis of missile with strake wing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(10) : 3241 -3248 . DOI: 10.7527/S1000-6893.2015.0006
[1] Herbst W B. Future fighter technologies[J]. Journal of Aircraft, 1980, 17(8): 561-566.
[2] Herbst W B. Dynamic of aircraf combat[J]. Journal of Aircraft, 1983, 20(7): 594-598.
[3] Wu T. More sharper fighting short sword[J]. Modern Weapons, 2006(11): 38-42 (in Chinese). 吴涛. 更锋利的格斗短刃世界第四代近距空空导弹评析.现代兵器, 2006(11): 38-42.
[4] Xing X L, Liu D J. Discussion of the key technology for the fourth generation close-in infrared air-to-air missiles[J]. Aero Weaponry, 2001(6): 37-40 (in Chinese). 邢晓岚, 刘代军. 第四代红外近距格斗空空导弹关键技术探讨[J]. 航空兵器, 2001(6): 37-40.
[5] Fan H T. Characteristics and key technologies of the fifth generation of air to air missiles[J]. Aeronautical Science & Technology, 2011(3): 1-5 (in Chinese). 樊会涛. 第五代空空导弹的特点及关键技术[J]. 航空科学技术, 2011(3):1-5.
[6] Ming B Y, Song J S, Xing X L. Japan's air-to-air missiles development and performance analysis[J]. Aerodynamic Missile Journal, 2013(9): 28-33 (in Chinese). 明宝印, 宋劲松, 邢晓岚. 日本空空导弹发展情况和性能分析[J]. 飞航导弹, 2013(9): 28-33.
[7] Nelson R C, Pelletier A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3): 185-248.
[8] Zhang H X, Liu W, Xie Y F. On the rocking motion and its dynamic evolution of a swept delta wing[J]. Acta Aerodynamica Sinica, 2006, 24(1): 5-9 (in Chinese). 张涵信, 刘伟, 谢昱飞. 后掠三角翼的摇滚及其动态演化问题[J]. 空气动力学学报, 2006, 24(1): 5-9.
[9] Xu K Z, Zhang Y F, Chen H X, et al. Numerical study of induced nonlinear rolling moment of finned missile at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 97-104 (in Chinese). 徐柯哲, 张宇飞, 陈海昕, 等. 导弹大迎角下非线性诱导滚转力矩数值研究[J]. 航空学报, 2014, 35(1): 97-104.
[10] Meyer J. Effects of the roll angle on cruciform wingbody configurations at high incidences[J]. Journal of Spacecraft and Rockets, 1994, 31(1): 113-122.
[11] Balasubramanian R, Shah V, Arora K, et al. Numerical investigations of lateral characteristics of an air-to-air missile[J]. Journal of Aircraft, 2013, 50(1): 87-95.
[12] Daniels P. A study of the nonlinear rolling motion of a four-finned missile[J]. Journal of Spacecraft and Rockets, 1970, 7(4): 510-512
[13] Cohen C J, Clare T A, Stevens F L. Analysis of the nonlinear rolling motion of finned missiles[J]. AIAA Journal, 1974, 12(3): 303-309.
[14] Da X Y, Zhao Z L, Tao Y, et al. Experimental investigation on free-to-roll motion of strake missile[J]. Journal of Experiment in Fluid Mechanics, 2012, 26(6): 40-43 (in Chinese). 达兴亚, 赵忠良, 陶洋, 等. 窄条翼导弹模型摇滚特性试验研究[J]. 实验流体力学, 2012, 26(6): 40-43.
[15] Da X Y, Tao Y, Zhao Z L. Numerical simulation of virtual flight based on prediction-correction coupling method and chimera grid [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 977-983 (in Chinese). 达兴亚, 陶洋, 赵忠良. 基于预估校正和嵌套网格的虚拟飞行数值模拟[J]. 航空学报, 2012, 33(6): 977-983.
[16] Dong B Y. Investigation of aerodynamic configuration and related technology for the new generation infrared air-to-air missile[J]. Aero Weaponry, 1996, 34(Z1): 18-22 (in Chinese). 董秉印. 新一代红外型空空导弹气动布局及其相关技术探讨[J]. 航空兵器, 1996, 34(Z1): 18-22.
[17] Shi Z W, Li L Y, Cheng K M, et al. Wind-tunnel high attack angle dynamic testing device based on hybrid mechanism: China, CN101929915B[P]. 2011-11-30 (in Chinese). 史志伟, 李鹭扬, 程克明, 等. 基于混联机构的风洞大攻角动态实验装置: 中国, CN101929915B[P]. 2011-11-30.
[18] Zhang H X, Yuan X Y, Xie Y F, et al. Research on the dynamic stability of an orbital reentry vehicle in pitching[J]. Acta Aerodynamica Sinica, 2002, 20(3): 247-259 (in Chinese). 张涵信, 袁先旭, 谢昱飞, 等. 飞船返回舱俯仰运动的动态稳定性研究[J]. 空气动力学学报, 2002, 20(3): 247-259.
[19] Zhang H X, Yuan X Y, Xie Y F, et al. Study of the dynamic stability of a pitching unfinned reentry capsule[J]. Acta Aerodynamica Sinica, 2004, 22(2): 130-134 (in Chinese). 张涵信, 袁先旭, 谢昱飞, 等. 不带稳定翼飞船返回舱俯仰动稳定性研究[J]. 空气动力学学报, 2004, 22(2): 130-134.
[20] Liu W, Zhang H X. Nonlinear dynamic analysis and simulation of wing rock for a slender wing[C]//Progress in Computational Fluid Dynamics—Proceeding of 12th China Computational Fluid Dynamics Conference. Beijing: Aerodynamic Society of China, 2004: 370-376 (in Chinese). 刘伟, 张涵信. 细长机翼摇滚的非线性动力学分析及数值模拟[C]//计算流体力学研究进展——第十二届全国计算流体力学会议论文集. 北京: 中国空气动力学会, 2004: 370-376.
[21] Zhang H X, Liu W, Xie Y F, et al. On the rocking motion and its dynamic evolution of a swept delta wing[J]. Acta Aerodynamica Sinica, 2006, 24(1): 5-9 (in Chinese). 张涵信, 刘伟, 谢昱飞, 等. 后掠三角翼的摇滚及其动态演化问题[J]. 空气动力学学报, 2006, 24(1): 5-9.
/
〈 | 〉 |