Aeroelasticity

Aeroelasticity of helicopters

  • HAN Jinglong ,
  • CHEN Quanlong ,
  • YUN Haiwei
Expand
  • 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. China Helicopter Research and Development Institute, Jingdezhen 333001, China

Received date: 2014-09-01

  Revised date: 2014-09-10

  Online published: 2014-10-31

Supported by

National Natural Science Foundation of China (11472133,11102085)

Abstract

The aeroelastic problems of helicopter are different from those of fixed wing aircraft. Not only the single blade is considered and analyzed, but also the rotor is considered as an integrated aeroelastic system, for which the dynamic inflow, wake effects and interactions between rotor and fuselage are all considered in the analysis process. For a single blade, the eccentric field and geometrical nonlinearities, as well as nonlinear flap-lag-twist interactions caused by motion involvement should be considered in structural dynamics modeling; while dynamic inflow and wing tip stall effect should be considered in aerodynamic analysis. Therefore, those problems essentially belong to the category of nonlinear aeroelasticity. Furthermore, the airloads of rotor are transferred to fuselage via rotor shaft in a periodic way and cause vibrations and motions of fuselage; while the motions of fuselage change the root conditions of blades and affect rotor aeroelastic characteristics. Such rotor/fuselage interaction problem becomes one of the important research directions and hot spots in helicopter aeroelasticity in recent years. The numerical methods of rotor flow field simulation are becoming mature gradually, among which, the overset grid and sliding mesh techniques are used to simulate the rigid motion of blades, and the dynamic mesh technique is used to simulate the elastic deformation. Thus, the flow field simulation of elastic rotor can be implemented with enough accuracy and efficiency. These methods are showing thriving vitality and becoming another important research direction of helicopter aeroelasticity. New concepts and configurations, such as tiltrotor, advancing blade concept (ABC) and compound helicopter, bring new aeroelastic problems. Discovering and solving problems constantly to promote the discipline development are the lifelong objectives of aeroelastician forever.

Cite this article

HAN Jinglong , CHEN Quanlong , YUN Haiwei . Aeroelasticity of helicopters[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(4) : 1034 -1055 . DOI: 10.7527/S1000-6893.2014.0253

References

[1] Loewy R G. Review of rotary-wing V/STOL dynamic and aeroelastic problems[J]. Journal of the American Helicopter Society, 1969, 14(3): 3-23.
[2] Dat R. Aeroelasticity of rotary wing aircraft in helicopter aerodynamics and dynamics[J]. AGARD Lecture Series, 1973, 63(4): 937-952.
[3] Friedmann P P. Recent development in rotary-wing aeroelasticity[J]. Journal of Aircraft, 1977, 14(11): 1027-1041.
[4] Friedmann P P. Formulation and solution of rotary-wing aeroelastic stability and response problems[J]. Vertica, 1983, 7(2): 101-141.
[5] Ormiston R A. Investigation of hingeless rotor stability[J]. Vertica, 1983, 7(2): 143-181.
[6] Loewy R G. Helicopter vibrations: a technological perspective[J]. Journal of the American Helicopter Society, 1984, 29(4): 4-30.
[7] Reichert G. Helicopter vibration control—a survey[J]. Vertica, 1981, 5(1): 1-20.
[8] Johnson W. Recent developments in dynamics of advanced rotor systems—Part I[J]. Vertica, 1986, 10(1): 73-107.
[9] Johnson W. Recent developments in dynamics of advanced rotor systems—Part II[J]. Vertica, 1986, 10(2): 109-150.
[10] Fu C Q. The development and state of the art of helicopter aeroelasticity[J]. Advances in Mechanics, 1986, 16(4): 511-516 (in Chinese). 符长青. 直升机气动弹性力学发展现状[J]. 力学进展, 1986, 16(4): 511-516.
[11] Friedmann P P. Recent trends in rotary-wing aeroelasticity[J]. Vertica, 1987, 11(1): 139-170.
[12] Ormiston R A, Warmbrodt W G, Hodges D H, et al. Survey of Army/NASA rotorcraft aeroelastic stability research, NASA/TM101026[R]. Moffett Field, CA: NASA Ames Resarch Center, 1971.
[13] Friedmann P P. Helicopter rotor dynamics and aeroelasticity: some key ideas and insights[J]. Vertica, 1990, 14(1): 101-121.
[14] Chopra I. Perspectives in aeromechanical stability of helicopter rotors[J]. Vertica, 1990, 14(4): 457-508.
[15] Friedmann P P, Hodges D A. Rotary-wing aeroelasticity with application to VTOL vehicles[C]// Flight Vehicle Materials, Structures, and Dynamics-Assessment and Future Directions. New York: American Society of Mechanical Engineers, 1993: 299-391.
[16] Friedmann P P. Renaissance of aeroelasticity and its future[J]. Journal of Aircraft, 1999, 36(1): 105-121.
[17] Friedmann P P. Rotary wing aeroelasticity—a historical perspective[J]. Journal of Aircraft, 2003, 40(6): 1019-1046.
[18] Friedmann P P. Rotary-wing aeroelasticity--current status and future trends[J]. AIAA Journal, 2004, 42(10): 1953-1972.
[19] Peters D A. How dynamic inflow survives in the competitive world of rotorcraft aerodynamics[J]. Journal of the American Helicopter Society, 2009, 54(1): 1-19.
[20] Johnson W. Milestones in rotorcraft aeromechanics Alexander A. Nikolsky honorary lecture[J]. Journal of the American Helicopter Society, 2011, 56(3): 1-24.
[21] Komerath N M , Smith M J, Tung C. A review of rotor wake physics and modeling[J]. Journal of the American Helicopter Society, 2011, 56(2): 1-19.
[22] He T P, Li S, Li X L. Research progress of dynamic stability of helicopter rotor/airframe[J]. Mechanics in Engineering, 2013, 35(3): 1-19 (in Chinese). 贺天鹏, 李书, 李小龙. 直升机旋翼/机体动稳定性研究进展[J]. 力学与实践, 2013, 35(3): 1-19.
[23] Wang S C, Xu G H. Progress of helicopter rotor aerodynamics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2001,33(3): 203-211 (in Chinese). 王适存, 徐国华. 直升机旋翼空气动力学的发展[J]. 南京航空航天大学学报, 2001, 33(3): 203-211.
[24] Datta A, Nixon M, Chopra I. Review of rotor loads prediction with the emergence of rotorcraft CFD[J]. Journal of the American Helicopter Society, 2007, 52(4): 287-317.
[25] Zaki A. Using tightly-coupled CFD/CSD simulation for rotorcraft stability analysis[D]. Atlanta, GA: Georgia Institute of Technology, 2012.
[26] Lynch C E. Advanced CFD methods for wind turbine analysis[D]. Atlanta, GA: Georgia Institute of Technology, 2011.
[27] Johnson W. Helicopter theory[M]. Princeton: Press Princeton University, 1980: 469-596.
[28] Bisplinghoff R L, Ashley H, Halfman R L. Aeroelasticity[M]. Reading, MA: Addison Wesley Longman, 1955: 188-293.
[29] Leishman J G. Principles of helicopter aerodynamics[M]. 2nd ed. New York: Cambridge University Press, 2000: 423-519.
[30] Johnson W. The response and airloading of helicopter rotor blades due to dynamic stall, ASRL TR 1301[R]. Cambridge: Massachusetts Institute of Technology, 1970.
[31] Ronald G E. A mathematical model of unsteady aerodynamics and radial flow for application to helicopter rotors, D210-10492-1[R]. Philadelphia, PA: Boeing Vertol Co, 1973.
[32] Petot D. Differential equation modeling of dynamic stall[J]. La Recherche Aerospatiale (English Edition), 1989 (5): 59-72.
[33] Truong V K. A 2-D dynamic stall model based on a hopf bifurcation, ONERA-TAP-93-156[R]. Chatillon: Office National d'Etudes et de Recherches Aerospatiales, 1993.
[34] Johnson W. Recent developments in rotar-wing aerodynamic theory[J]. AIAA Journal, 1986, 24(8): 1219-1245.
[35] Wachspress D A, Quackenbush T R, Boschitsch A H. First-principles free-vortex wake analysis for helicopters and tiltrotors[C]// 59th American Helicopter Society Annual Forum. Arizona: American Helicopter Society, 2003: 1763-1786.
[36] Wang S C. Generalized vortex theory of the lifting rotor of helicopter, AD 286576[R]. Washington, D. C.: Department of Defense USA, 1961.
[37] Clark D R, Leiper A C. The free wake analysis a method for the prediction of helicopter rotor hovering performance[J]. Journal of the American Helicopter,Society, 1970, 15(1): 3-11.
[38] Landgrebe A J. An analytical and experimental investigation of helicopter rotor hover performance and wake geometry characteristics, K910828-31[R]. East Hartforo CT: United Aircraft Research Labs, 1971.
[39] Egolf T A, Landgrebe A J. Helicopter rotor wake geometry and its influence in forward flight, NASA CR/3726[R]. Hampton: NASA Langley Research Center, 1983.
[40] Beddoes T S. A wake model for high resolution airloads[C]// Proceedings of the 2nd International Conference on Basic Rotorcraft Research. Traingle Park, NC: American Helicopter Society, 1985.
[41] Johnson W. Wake model for helicopter rotors in high speed flight, NASA/CR-177507[R]. Moffett Field, CA: NASA Ames Research Center, 1988.
[42] Bagai A, Leishman J G. Rotor free-wake modeling using a pseudo-implicit technique including comparisons with experiment data[J]. Journal of the American Helicopter Society, 1995, 40(3): 29-41.
[43] Pitt D M, Peters D A. Rotor dynamic inflow derivatives and time constants from various inflow models[D]. Washington, D. C.: Washington University, 1980.
[44] Roberts T W, Murman E M. Solution method for hovering helicopter rotor using the Euler equations, AIAA-1985-0436[R]. Reston: AIAA, 1985.
[45] Sankar L N, Wake B E, Lekoudis S G. Solution of the unsteady euler equations for fixed and rotor wing configurations, AIAA-1985-0120[R]. Reston: AIAA, 1985.
[46] Kramer E, Hertel J, Wagner S. Computation of subsonic and transonic helicopter rotor flow using Euler equations[J]. Vertica, 1988, 12(3): 279-291.
[47] Chen C L, McCroskey W J. Numerical simulation of helicopter multi-bladed rotor flow, AIAA-1988-0046[R]. Reston: AIAA, 1988.
[48] Wake B E. A solution procedure for the Navier-Stokes equations applied to rotors[D]. Atalanta GA: Georgia Institute of Technology, 1987.
[49] Srinivasan G R, McCroskey W J. Navier-Stokes calculations of hovering rotor flowfields[J]. Journal of Aircraft, 1988, 25(10): 865-874.
[50] Agarwal R K, Deese J E. Navier-Stokes calculations of the flowfield of a helicopter rotor in hover, AIAA-1988-0106[R]. Reston: AIAA, 1988.
[51] Srinivasan G R, Baeder J D, Obayashi S, et al. Flowfield of a lifting rotor in hover: a Navier-Stokes simulation[J]. AIAA Journal, 1992, 30(10): 2371-2378.
[52] Wake B E, Baeder J D. Evaluation of a Navier-Stokes analysis method for hover performance prediction[J]. Journal of American Helicopter Society, 1992, 41(1): 7-17.
[53] Srinivasan G R, Baeder J D. TURNS: a free wake Euler/Navier-Stokes numerical method for helicopter rotors[J]. AIAA Journal, 1993, 31(5): 959-962.
[54] Ahmad J, Duque E P N. Helicopter rotor blade computation in unsteady flows using moving overset grids[J]. Journal of Aircraft, 1996, 33(1): 54-60.
[55] Jiang X, Chen Z B, Zhang Y L. Numerical simulation of a hovering rotor flowfield using a dual-time method[J]. Acta Aerodynamica Sinica, 1998,16(3): 288-296 (in Chinese). 江雄, 陈作斌, 张玉伦. 用双时间法数值模拟悬停旋翼流场[J]. 空气动力学学报, 1998, 16(3): 288-296.
[56] Yang A M, Qiao Z D. Navier-Stokes computation for a helicopter rotor in forward flight based on moving overset grids[J]. Acta Aeronautica et Astronautica Sinica, 2001,22(5): 434-436 (in Chinese). 杨爱明, 乔志德. 基于运动嵌套网格的前飞旋翼绕流Navier-Stokes方程数值计算[J]. 航空学报, 2001, 22(5): 434-436.
[57] Zhao Q J, Xu G H. A hybrid method based on Navier-Stokes/free wake/full-potential solver for rotor flow simulations[J]. Acta Aerodynamica Sinica, 2006, 24(1): 15-21 (in Chinese). 招启军, 徐国华. 基于Navier-Stokes方程/自由尾迹/全位势方程的旋翼流场模拟混合方法[J]. 空气动力学学报, 2006, 24(1): 15-21.
[58] Wie S Y, Im D K, Kwon J H, et al. Numerical simulation of rotor using coupled computational fluid dynamics and free wake[J]. Journal of Aircraft, 2010,47(4): 1167-1177.
[59] Rogers S E, Dietz W E, Suhs N E. Pegasus 5:an automated preprocessor for overset-grid computational fluid dynamics[J]. AIAA Journal, 2003, 41(6): 1037-1045.
[60] Yang W Q, Song B F, Song W P. Distance decreasing method for confirming corresponding cells of overset grids and its application[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 205-212 (in Chinese). 杨文青, 宋笔锋, 宋文萍.高效确定重叠网格对应关系的距离减缩法及其应用[J].航空学报, 2009, 30(2): 205-212.
[61] Wang B, Zhao Q J, Xu G, et al. A new moving-embedded grid method for numerical simulation of unsteady flow-field of the helicopter rotor in forward flight[J]. Acta Aerodynamica Sinica, 2012, 30(1): 14-21 (in Chinese). 王博, 招启军, 徐广, 等.一种适合于旋翼前飞非定常流场计算的新型运动嵌套网格方法[J]. 空气动力学学报, 2012, 30(1): 14-21.
[62] Wei P, Shi Y J, Xu G H, et al. Numerical method for simulating rotor flow field based upon viscous vortex model[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 771-780 (in Chinese). 魏鹏, 史勇杰, 徐国华, 等. 基于黏性涡模型的旋翼流场数值方法[J]. 航空学报, 2012, 33(5): 771-780.
[63] He C J, Zhao J G. Modeling rotor wake dynamics with viscous vortex particle method[J]. AIAA Journal, 2009, 47(4): 902-915.
[64] Biedron R T, Lee-Rauch E M. Rotor airloads prediction using unstructured meshes and loose CFD/CSD coupling, AIAA-2008-7341[R]. Reston: AIAA, 2008.
[65] Datta A, Baeder J, Chopra I, et al. CFD/CSD prediction of rotor vibratory loads in high-speed flight[J]. Journal of Aircraft, 2006, 43(6): 1698-1709.
[66] Potsdam M, Yeo H, Johnson W. Rotor airloads prediction using loose aerodynamic/structural coupling[J]. Journal of Aircraft, 2006, 43(3): 732-742.
[67] Gerhold T, Neumann J. The parallel mesh deformation of the DLR TAU-code[J]. New Results in Numerical and Experimental Fluid, 2007, 96(6): 162-169.
[68] Dietz M, Kessler M. Trimmed simulation of a complete helicopter configuration using fluid-structure coupling[C]// High Performance Computing in Science. Berlin: Springer-Verlag, 2008: 487-501.
[69] Meunier M. Simulation and optimization of flow control strategies for novel high-lift configurations[J]. AIAA Journal, 2009, 47(5): 1145-1157.
[70] Mavriplis D J. Multigrid solution for the discrete adjoint for optimization problems on unstructured meshes[J]. AIAA Journal, 2006, 44(1): 42-50.
[71] Miller R H, Ellis C W. Blade vibration and flutter[J]. Journal of the American Helicopter Society, 1956, 1(3): 19-38.
[72] Friedmann P P, Dewey H H. Rotary wing aeroelasticity-a historical perspective[J]. Journal of Aircraft, 2003, 40(6): 1019-1046.
[73] Daughaday H, Duwaldt F A, Gates C A. Investigation of helicopter blade flutter and load amplification problems[J]. Journal of the American Helicopter Society, 1957, 2(3): 27-45.
[74] Chou P C. Pitch-lag instability of helicopter rotors[J]. Journal of the American Helicopter Society, 1958, 3(3): 30-38.
[75] Young M F. A theory of rotor blade motion stability in powered flight[J]. Journal of the American Helicopter Society, 1964, 9(3): 12-25.
[76] Hohenemser K H, Heaton P W. Aeroelastic instability of torsionally rigid helicopter blades[J]. Journal of the American Helicopter Society, 1967, 12(2): 1-13.
[77] Bielawa R L. A second order non-linear theory of the aeroelastic properties of helicopter blades in forward flight[D]. Cambridge, MA: Massachusetts Institute of Technology, 1965.
[78] Friedmann P P, Tong P. Dynamic nonlinear elastic stability of helicopter rotor blades in hover and in forward flight NASA/CR-114485[R]. Moffett Field, CA: NASA Ames Research Center, 1972.
[79] Horvay G. Rotor blade flapping motion[J]. Quarterly of Applied Mathematics, 1947, 5(2): 149-167.
[80] Friedmann P P, Kottapalli S. Coupled flap-lag-torsional dynamics of hingeless rotor blades in forward flight[J]. Journal of the American Helicopter Society, 1982, 27(4): 28-36.
[81] Panda B, Chopra I. Flap-lag-torsion stability in forward flight[J]. Journal of the American Helicopter Society, 1985, 29(4): 30-39.
[82] Bauchau O A, Wang J L. Efficient and robust approaches for rotorcraft stability analysis[J]. Journal of the American Helicopter Society, 2010, 55(3): 61-69.
[83] Mohan R, Gaonkar G H. Evaluation of dynamic stall models for rotorcraft stability predictions under high-speed, high-thrust conditions[C]//American Helicopter Society International- Next Generation Vertical Lift Specialists' Meeting. Washington, D. C.: American Helicopter Society, 2011: 207-235.
[84] Coleman R P, Feingold A M. Theory of self-excited mechanical oscillations of helicopter rotors with hinged blades, NACA/TR-1351[R]. Washington, D.C.: NASA, 1958.
[85] Donham R E, Cardinale S V, Sachs I B. Ground and air resonance characteristics of a soft in-plane rigid-rotor system[C]//Proceedings of the AIAA/AHS VTOL Research, Design and Operations Meeting. Reston: AIAA, 1968.
[86] Hodges D H. An aeromechanical stability analysis for bearingless rotor helicopters[J]. Journal of the American Helicopter Society, 1979, 24(1): 2-9.
[87] Bousman W G. An experimental investigation of the effects of aeroelastic couplings on aeromechanical stability of a hingeless rotor helicopter[J]. Journal of the American Helicopter Society, 1981, 26(1): 46-54.
[88] Johnson W. Influence of unsteady aerodynamics on hingeless rotor ground resonance[J]. Journal of Aircraft, 1982, 19(8): 668-673.
[89] Loewy R G, Zotto M. Helicopter ground/air resonance including rotor shaft flexibility and control coupling[C]// Proceedings of the 45th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society, 1989: 19-32.
[90] Torok M S, Chopra I. A coupled rotor aeroelastic analysis utilizing nonlinear aerodynamics and refined wake modeling[J]. Vertica, 1989, 13(2): 87-106.
[91] Yeo H, Potsdam M, Ormiston R A. Rotor aeroelastic stability analysis using coupled computational fluid dynamics/ computational structural dynamics[J]. Journal of the American Helicopter Society, 2011, 56(4): 88-103.
[92] Bauchau O A, Wang J L. Efficient and robust approaches for rotorcraft stability analysis[J]. Journal of the American Helicopter Society, 2010, 55(3): 0320061-0320069.
[93] Gaonkar M R, Gopal H. Evaluation of dynamic stall models for rotorcraft stability predictions under high-speed, high-thrust conditions[C]// American Helicopter Society International - Next Generation Vertical Lift Specialists' Meeting February. Washington, D. C.: American Helcopter Society, 2011: 236-252.
[94] Gaonkar M R, Gopal H. A unified assessment of fast Floquet, generalized Floquet, and periodic eigenvector methods for rotorcraft stability predictions[J]. Journal of the American Helicopter Society, 2013, 58(4): 1-12.
[95] Xue H F, Xiang J W, Zhang X G. Investigation of helicopter air resonance dynamic stability in forward flight and mutual excitation of different degrees of freedom[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4): 454-457 (in Chinese). 薛海峰, 向锦武, 张晓谷. 直升机前飞空中共振稳定性和各自由度相互作用研究[J]. 航空学报, 2005, 26(4): 454-457.
[96] Wang B, Li S, Zhang X G. Influence analysis of helicopter air resonance with nonlinear interblade viscoelastic dampers[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 550-555 (in Chinese). 王波, 李书, 张晓谷. 非线性叶间黏弹减摆器对直升机空中共振的影响分析[J]. 航空学报, 2007, 28(3): 550-555.
[97] Hou P, Yang W D, Sun D H, et al. Aeroelastic analysis of rotor/fuselage/landing gears coupled system for helicopter during rotor starting process in the ground[J]. Journal of Vibration Engineering, 2013, 26(3): 318-327 (in Chinese). 侯鹏, 杨卫东, 孙东红, 等. 直升机地面开车过程旋翼/机体/起落架耦合气弹动力学分析[J]. 振动工程学报, 2013, 26(3): 318-327.
[98] Flax A H. The bending of rotor blades[J]. Journal of the Aeronautical Sciences, 1947, 14(1): 42-50.
[99] Johnson W, Mayne R. Effect of second-harmonic flapping on the stresses of a hinged rotor blade, Goodyear Aircraft Report No R-107-4 Part III[R]. Akron Ohio: Goodyear Aircraft Corporation, 1946.
[100] Di Prima R C, Handelman G H. Vibrations of twisted beams[J]. Quarterly of Applied Mathematics, 1954, XII (3): 241-259.
[101] Shulman Y. Stability of a flexible helicopter rotor blade in forward flight[J]. Journal of the Aeronautical Sciences, 1956, 23(7): 663-670.
[102] Houbolt J C, Brooks G W. Differential equations of motion for combined flapwise bending, chordwise bending, and torsion of twisted non-uniform rotor blade, NASA 1346[R]. Hampton: NASA Langley Aeronautical Laboratory, 1958.
[103] Hodges D H, Dowell E H. Nonlinear equations of motion for the elastic bending and torsion of twisted non-uniform rotor blades, NASA/TN D-7818[R]. Moffett Field, CA: NASA Ames Research Center, 1974.
[104] Friedmann P P, Tong P. Dynamic nonlinear elastic stability of helicopter rotor blades in hover and in forward flight, NASA/CR-114485[R]. Moffett Field, CA: NASA Ames Research Center, 1972.
[105] Johnson W. Aeroelastic analysis for rotorcraft in flight or in a wind tunnel, NASA/TN D-8515[R]. Moffett Field, CA: NASA Ames Research Center, 1977.
[106] Straub F K, Sangha K B, Panda B. Advanced finite element modeling of rotor blade aeroelasticity[J]. Journal of the American Helicopter Society, 1994, 39(2): 56-68.
[107] Zhang C L, Yu L. Study on aeroelastic stability of rotor blade in hover[J]. Journal of Aerospace Power, 1995, 10(2): 117-120 (in Chinese). 张呈林, 余林. 悬停状态下旋翼桨叶气动弹性稳定性分析及试验[J]. 航空动力学报, 1995, 10(2): 117-120.
[108] Yang W D, Deng J H. Aeroelastic stability analysis of helicopter rotor blade with swept tips[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(3): 248-252 (in Chinese). 杨卫东, 邓景辉. 直升机后掠桨尖旋翼气弹稳定性分析[J]. 南京航空航天大学学报, 2003, 35(3): 248-252.
[109] Hodges D H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J]. International Journal of Solids and Structures, 1990, 26(11): 68-82.
[110] Berdichevsky V L. On the energy of an elastic rod[J]. Applied Mathematics and Mechanics, 1981, 45(4): 518-529.
[111] Hodges D H, Atilgan A R, Cesnik C E S, et al. On a simplified strain energy function for geometrically nonlinear behavior of anisotropic beams[J]. Composites Engineering, 1992, 2(5-7): 513-526.
[112] Yu W B, Volovoi V V, Hodges D H, et al. Validation of the variational asymptotic beam sectional analysis[J]. AIAA Journal, 2002, 40(10): 2105-2112.
[113] Yu W B, Hodges D H. Generalized timoshenko theory of the variational asymptotic beam sectional analysis[J]. Journal of the American Helicopter Society, 2005, 50(1): 46-55.
[114] Johnson W. Rotorcraft dynamics models for a comprehensive analysis[C]//54th Annual Forum of the American Helicopter Society. Washington, D. C.: American Helicopter Society, 1998: 452-471.
[115] Saberi H, Khoshlahjeh M, Ormiston R A, et al. Overview of RCAS and application to advanced rotorcraft problems[C]//AHS 4th Decennial Specialist's Conference on Aeromechanics. Washington, D.C.: American Helicopter Society, 2004: 105-121.
[116] Yu Z H, Yang W D, Deng J H, et al. Model of rotor aeroelastic stability using dynamics of flexible multibody systems[J]. Journal of Aerospace Power, 2012, 27(5): 1122-1130 (in Chinese). 虞志浩, 杨卫东, 邓景辉, 等. 基于多体动力学的旋翼模型与气弹稳定性[J]. 航空动力学报, 2012, 27(5): 1122-1130.
[117] Gerstenberger W, Wood E R. Analysis of helicopter aeroelastic characteristics in high-speed flight[J]. AIAA Journal, 1964, 1(10): 2366-2381.
[118] Staley J A, Sciarra J J. Coupled rotor/airframe vibration prediction methods, NASA/SP-352[R]. Moffett Field, CA: NASA Ames Research Center, 1974: 81-90.
[119] Hsu T K, Peters D A. Coupled rotor/airframe vibration analysis by a combined harmonic-balance impedance-matching method[J]. Journal of the American Helicopter Society, 1982, 27(1): 25-34.
[120] Gable R, Sankewitsch V. Rotor-fuselage coupling by impedance[C]//42nd Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society, 1986: 1-11.
[121] Friedmann W. Formulation of coupled rotor/fuselage equations of motion[J]. Vertica, 1979, 3(3): 245-271.
[122] Fledel S. Coupled rotor/airframe vibration analysis[D]. Maryland: University of Maryland, 1989.
[123] Cheng Y M, Ren G X, Zheng Z G. Aeroelastic response analysis of a coupled rotor/fuselage helicopter system (I) modeling of the rotary-wing system[J]. Chinese Journal of Applied Mechanics, 1999, 16(1): 33-39 (in Chinese). 程永明, 任革学, 郑兆昌. 直升机旋翼/机身耦合系统气弹响应分析(一)旋翼系统的建模[J]. 应用力学学报, 1999, 16(1): 33-39.
[124] Cheng Y M, Ren G X, Zheng Z C. Aeroelastic response analysis of a coupled rotor/fuselage system (II) solution of the equations[J]. Chinese Journal of Applied Mechanics, 1999, 16(2): 32-37 (in Chinese). 程永明, 任革学, 郑兆昌. 直升机旋翼/机身耦合系统气弹响应分析(二)方程的求解[J]. 应用力学学报, 1999, 16(2): 32-37.
[125] Wang H W, Gao Z, Zheng Z C. Aeroelastic response and stability of helicopter rotor blades in forward flight[J]. Journal of Vibration Engineering,1999,12(4): 521-528 (in Chinese). 王浩文, 高正, 郑兆昌. 前飞状态下直升机旋翼系统气弹响应及稳定性分析[J]. 振动工程学报, 1999, 12(4): 521-528.
[126] Hu X Y, Han J L. Nonlinear aeroelastic coupled trim and stability analysis of rotor-fuselage[J]. Applied Mathematics and Mechanics, 2010, 31(2): 218-226.
[127] Yeo H , Inderjit C. Coupled rotor/fuselage vibration analysis for teetering rotor and test data comparison[J]. Journal of Aircraft, 2001, 38(1): 111-121.
[128] Zheng Z C, Ren G X, Cheng Y M. Aeroelastic response of a coupled rotor/fuselage system in hovering and forward flight[J]. Archive of Applied Mechanics, 1999, 69(1): 68-82.
[129] Chiu T, Friedmann P P. A coupled helicopter rotor/fuselage aeroelastic response model for ACSR[C]//AIAA Conference. Reston: AIAA, 1995: 574-600.
[130] Cribbs R C, Friedmann P P, Chiu T. Coupled helicopter rotor/flexible fuselage aeroelastic model for control of structural response[J]. AIAA Journal, 2000, 38(10): 1777-1788.
[131] Chen Q L, Han J L. CFD/CSD method for coupled rotor/fuselage vibration analysis[J]. Journal of Vibration Engineering, 2014, 27(3): 370-376 (in Chinese). 陈全龙, 韩景龙. 旋翼/机身耦合问题的CFD/CSD分析方法[J]. 振动工程学报, 2014, 27(3): 370-376.
[132] Tung C, Caradonna F X, Johnson W. The prediction of transonic flows on an advancing rotor[J]. Journal of the American Helicopter Society, 1986, 32(7): 4-9.
[133] Yamauchi G K, Heffernan R M, Gaubert M. Correlation of SA349/2 helicopter flight test data with a comprehensive rotorcraft model[J]. Journal of the American Helicopter Society, 1988, 33(2): 31-42.
[134] Kim K C, Desopper A, Chopra I. Blade response calculations using three-dimensional aerodynamic modeling[J]. Journal of the American Helicopter Society, 1991, 36(1): 68-77.
[135] Bauchau O A, Ahmad J U. Advanced CFD and CSD methods for multidisciplinary applications in rotorcraft problems, AIAA-1996-4151[R]. Reston: AIAA, 1996.
[136] Altmikus A R M, Wagner S, Beaumier P, et al. A comparison: weak versus strong modular coupling for trimmed aeroelastic rotor simulations[C]// Proceedings of the 58th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society, 2002: 697-710.
[137] Biedron R T, Lee-Rauch E M. Rotor airloads prediction using unstructured meshes and loose CFD/CSD coupling, AIAA-2008-7341[R]. Reston: AIAA, 2008.
[138] Dimanlig A C. Saberi H A, Meadowcroft E T, et al. CFD/CSD coupling and trim of the CH-47 helicopter[C]// 9th Symposium on Overset Composite Grid and Solution Technology. Washington, D.C.: American Helicopter Society, 2008: 1-27.
[139] Bhagwat M J, Ormiston R A, Saberi H A. Application of computational fluid dynamics/computational structural dynamics coupling for analysis of rotorcraft airloads and blade loads in maneuvering flight[J]. Journal of the American Helicopter Society, 2012, 57(3): 71-85.
[140] Jain R, Yeo H,Inderjit C. Computational fluid dynamics-computational structural dynamics analysis of active control of helicopter rotor for performance improvement[J]. Journal of the American Helicopter Society, 2010, 55(4): 47-59.
[141] Yeo H, Potsdam M, Ormiston R A. Rotor aeroelastic stability analysis using coupled computational fluid dynamics/ computational structural dynamics[J]. Journal of the American Helicopter Society, 2011, 56(4): 35-43.
[142] Bhagwat M J, Ormiston R A, Saberi H A, et al. Application of computational fluid dynamics/computational structural dynamics coupling for analysis of rotorcraft airloads and blade loads in maneuvering flight[J]. Journal of the American Helicopter Society, 2012, 57(3): 1-19.
[143] Abras J N, Eric L C, Smith M J. Computational fluid dynamics - computational structural dynamics rotor coupling using an unstructured Reynolds-averaged, Navier-Stokes methodology[J]. Journal of the American Helicopter Society, 2012, 57(1): 1-14.
[144] Wang H. Numerical simulation for the flowfield of new-tip rotors with effect of blade elasticity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese). 王海. 计入桨叶结构弹性的新型桨尖旋翼流场数值模拟[D]. 南京: 南京航空航天大学, 2010.
[145] Chen L. Numerical simulation of rotor aeroelastic using CFD/ CSD coupling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese). 陈龙. 基于CFD/CSD耦合的旋翼气动弹性数值模拟[D]. 南京: 南京航空航天大学, 2011.
[146] Chen Q L. Research on helicopter dynamics using CFD/CSD coupling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese). 陈全龙. 基于CFD/CSD耦合的直升机动力学问题研究[D]. 南京: 南京航空航天大学, 2014.
[147] Friedmann P P. Helicopter vibration reduction using structural optimization with aeroelastic/ multidisciplinary constraints - a survey[J]. Journal of Aircraft, 1991, 28(1): 8-21.
[148] Ranjan G, Inderjit C. Aeroelastic optimization of a helicopter rotor to reduce vibration and dynamic stresses[J]. Journal of Aircraft, 1996, 12(4): 808-815.
[149] Yuan K A, Friedmann P P. Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips, NASA-CR-4665[R]. Hampton: NASA Langley Research Center, 1995.
[150] Yuan K A, Friedmann P P. Structural optimization for vibration loads reduction of composite helicopter rotor blades with advanced geometry tips[J]. Journal of the American Helicopter Society, 1998, 43(3): 246-256.
[151] Gu Y X, Liu S T, Guan Z Q, et al. Design-oriented dynamic design optimization of composite rotor blades[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(3): 38-41 (in Chinese). 顾元宪, 刘书田, 关振群, 等. 面向设计的复合材料旋翼桨叶动力学优化设计[J]. 航空学报, 1998, 19(3): 38-41.
[152] Xiang J W, Zhang X G. Aeroelastic optimization of a helicopter rotor with single-cell composite blades for vibration reduction[J]. Journal of Aerospace Power, 1999, 14(2): 212-215 (in Chinese). 向锦武, 张晓谷. 直升机旋翼桨叶气弹优化减振设计方法[J]. 航空动力学报, 1999, 14(2): 212-215.
[153] Ganguli R, Chopra I. Aeroelastic optimization of a helicopter rotor with composite coupling[J]. Journal of Aircraft, 1995, 32(6): 1326-1334.
[154] Guo J X, Xiang J W. Composite rotor blade design optimization for vibration reduction with aeroelastic constraints[J]. Journal of Aeronautics, 2004, 17(3): 152-158.
[155] Wang H Z. The helicopter rotor aeroelastic research of multi-objective vibration reduction optimization by modal shaping[D]. Nanjing: Nanjing University of Aeronantics and Astronantics, 2010 (in Chinese). 王红州. 基于模态修型的旋翼气弹动力学多目标减振优化研究[D]. 南京:南京航空航天大学, 2010.
[156] Bao J S, Nagaraj V T, Inderjit C, et al. Development of mach scale rotors with tailored composite coupling for vibration reduction[J]. Journal of Aircraft, 2006, 43(4):922-931.
[157] Kim D K, Lee I, Song K W, et al. Experimental study on dynamic characteristics improvement of helicopter hingeless rotor system[J]. Journal of Aircraft, 2013, 50(5): 1333-1339.
[158] Friedmann P P, Millott T A. Vibration reduction in rotorcraft using active control: a comparison of various approaches[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(4): 664-673.
[159] Splettstoesser W R, Kube R, Wagner W, et al. Key results from a higher harmonic control aeroacoustic rotor test (HART)[J]. Journal of the American Helicopter Society, 1997, 42(1): 58-78.
[160] Patt D, Liu L, Chandrasekar J, et al. Higher-harmonic-control algorithm for helicopter vibration reduction revisited[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 918-930.
[161] Yeo H, Romander E A, Norman T R. Investigation of rotor performance and loads of a UH-60A individual blade control system[J]. Journal of the American Helicopter Society, 2011, 56(4): 1-18.
[162] Theodore C R, Tischler M B. Development and operation of an automatic rotor trim control system for the UH-60 individual blade control wind tunnel test[J]. Journal of the American Helicopter Society, 2013, 58(4): 1-13.
[163] Booth J, Earl R, Wilbur M L, et al. Acoustic aspects of active-twist rotor control[J]. Journal of the American Helicopter Society, 2004, 49(1): 3-10.
[164] Shin S, Cesnik C E S, Hall S R. Closed-loop control test of the NASA/Army/MIT active twist rotor for vibration reduction[J]. Journal of the American Helicopter Society, 2005, 50(2): 178-194.
[165] Bernhard A P F, Wong J. Wind-tunnel evaluation of a sikorsky active rotor controller implemented on the NASA/ARMY/MIT active twist rotor[J]. Journal of the American Helicopter Society, 2005, 50(1): 65-81.
[166] Cribbs R C, Friedmann P P, Chiu T. Coupled helicopter rotor/flexible fuselage aeroelastic model for control of structural response[J]. AIAA Journal, 2000, 38(10): 1777-1788.
[167] Song L S, Xia P Q. Active control of helicopter structural response using piezoelectric stack actuators[J]. Journal of Aircraft, 2013, 50(2): 659-663.
[168] Shen J W, Yang M, Inderjit C. Swashplateless helicopter rotor with trailing-edge flaps for flight and vibration control[J]. Journal of Aircraft, 2006, 43(2): 346-352.
[169] Viswamurthy S R, Ganguli R. Using the complete authority of multiple active trailing-edge flaps for helicopter vibration control[J]. Journal of Vibration and Control, 2008, 14(8): 1175-1199.
[170] Viswamurthy S R, Ganguli R. Effect of piezoelectric hysteresis on helicopter vibration control using trailing-edge flaps[J]. Journal of Guidance, Control and Dynamics, 2006, 29(5): 1201-1209.
[171] Muir E R, Liu L, Friedmann P P, et al. Effect of piezoceramic actuator hysteresis on helicopter vibration and noise reduction[J]. Journal of Guidance, Control and Dynamics, 2012, 35(4): 1299-1311.
[172] Roget B, Inderjit C. Wind-tunnel testing of rotor with individually controlled trailing-edge flaps for vibration reduction[J]. Journal of Aircraft, 2008, 45(3): 868-879.
[173] Zhang Z, Huang W J, Yang W D. Design analysis and test of smart rotor blades model with trailing edge flaps[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(3): 296-301 (in Chinese). 张柱, 黄文俊, 杨卫东. 后缘小翼型智能旋翼桨叶模型设计分析与试验研究[J]. 南京航空航天大学学报, 2011, 43(3): 296-301.
[174] Wang R, Xia P Q. Control of helicopter rotor blade dynamic stall and hub vibration loads by multiple trailing edge flaps[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1083-1091 (in Chinese). 王荣, 夏品奇. 多片后缘小翼对直升机旋翼桨叶动态失速及桨毂振动载荷的控制[J]. 航空学报, 2013, 34(5): 1083-1091.
[175] Liu L, Padthe A K, Friedmann P P. Computational study of microflaps with application to vibration reduction in helicopter rotors[J]. AIAA Journal, 2011, 49(7): 1450-1465.
[176] Palacios J, Kinzel M, Overmeyer A. Active gurney flaps: their application in a rotor blade centrifugal field[J]. Journal of Aircraft, 2014, 51(2): 473-489.
[177] Reed W H. Propeller-rotor whirl flutter: a state-of-the-art review[J]. Journal of Sound and Vibration, 1966, 4(3): 526-544.
[178] Kvaternik R G . A review of some tilt-rotor aeroelastic research at NASA-Langley[J]. Journal of Aircraft, 1976, 13(5): 111-121.
[179] Johnson W. Recent developments in the dynamics of advanced rotor systems, NASA/TM-86669[R]. Moffett Field, CA: NASA Ames Research Center, 1985.
[180] Venkat S, Inderjit C. Formulation of a comprehensive aeroelastic analysis for tiltrotor aircraft, AIAA-1996-1546[R]. Reston: AIAA, 1996.
[181] Acree C W, Peyran R J, Johnson W. Rotor design options for improving tiltrotor whirl-flutter stability margins[J]. Journal of the American Helicopter Society, 2001, 46(2): 87-95
[182] Beerinder S, Inderjit C. Whirl flutter stability of two-bladed proprotor/pylon systems in high speed flight[J]. Journal of the American Helicopter Society, 2003, 48(2): 99-107.
[183] Dong L H, Yang W D, Xia P Q. Multi-body aeroelastic stability analysis of tiltrotor aircraft in helicopter mode[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2006, 38(2): 161-167.
[184] Xue L P, Zhang C L. Modeling study on tilt-rotor’s aeroelastic stability in cruise flight[J]. Journal of Aerospace Power, 2009, 24(2): 225-261 (in Chinese).
薛立鹏, 张呈林. 前飞状态倾转旋翼机气弹稳定性建模[J]. 航空动力学报, 2009, 24(2): 225-261.
[185] Yang C M, Xia P Q. Aeroelastic stability of wing/pylon/rotor coupled system for tiltrotor aircraft in forward flight[J]. Science in China Series: Technological Sciences, 2011, 41(10): 1322-1328 (in Chinese).
杨朝敏, 夏品奇, 倾转旋翼机前飞时机翼/短舱/旋翼耦合系统气弹稳定性分析[J]. 中国科学: 技术科学, 2011, 41(10): 1322-1328.
[186] Gordon L J, Rosen K M. Challenges in the aerodynamic optimization of high-efficiency proprotors[J]. Journal of the American Helicopter Society, 2011, 56(4): 44-54.
[187] Acree C W. Impact of aerodynamics and structures technology on heavy lift tiltrotors[J]. Journal of the American Helicopter Society, 2010, 55(1): 12-21.
[188] Jenney D S. ABC aircraft development status[C]// 6th European Rotorcraft and powered Lift Aircraft Forum. Bristol England: Bristol University, 1980: 1-19.
[189] Ruddell A J. Advancing blade concept (ABCTM) Development[J]. Journal of the American Helicopter Society, 1977, 22(1): 13-23.
[190] Ruddell A J, Macrino J A. Advancing blade concept (ABC) high speed development[C]// 36th Annual National Forum of the American Helicopter Society. Washington, D. C.: American Helicopter Society, 1980: 1-24.
[191] Fort F F. Performance and loads data from a wind tunnel test of a full-scale, coaxial, hingeless rotor helicopter, NASA/TM-81329[R]. Moffett Field, CA: NASA Ames Research Center, 1981.
[192] Robert K B. The ABC rotor-a history perspective[C]//60th Annual Forum of the American Helicopter Society, Washington, D.C.: American Helicopter Society, 2004: 1-47.
[193] Blackwell R, Millott T. Dynamics design characteristics of the Sikorsky X2 technology demonstrator aircraft[C]// 64th Annual Forum of the American Helicopter Society, Washington, D.C.:American Helicopter Society, 2008: 886-899.
[194] Walsh D, Weiner S, Arifian K, et al. High airspeed testing of the sikorsky X2 technology demonstrator[C]// 67th Annual Forum of the American Helicopter Society International. Washington, D.C.: American Helicopter Society, 2011: 1-17.
[195] Ashish B. Aerodynamic design of the X2 technology demonstrator main rotor blade[C]// 64th Annual Forum of the American Helicopter Society. Washington, D.C.: American Helicopter Society, 2008: 1-16.
[196] Kim H W, Adam R, Kenyon K, et al. Interactional aerodynamics and acoustics propeller-augmented compound coaxial helicopter[C]//American Helicopter Society Specialists Conference on Aeromechanics. Washington, D.C.: American Helicopter Society, 2008: 1-17.
[197] Chen Q L, Han J L, Yun H W. Study on ABC rotor dynamics analysis method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2451-2460 (in Chinese).
陈全龙, 韩景龙, 员海玮. ABC旋翼动力学分析方法研究[J]. 航空学报, 2014, 35(9): 2451-2460.

Outlines

/