Review

Research status of hypersonic vehicle fluid-thermal-solid coupling and software development

  • GUI Yewei ,
  • LIU Lei ,
  • DAI Guangyue ,
  • ZHANG Litong
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2016-10-12

  Revised date: 2016-11-08

  Online published: 2014-10-20

Supported by

National Natural Science Foundation of China (11472295)

Abstract

The study of fluid-thermal-structural coupling problem is particularly important for the design and evaluation of the thermal protection system of a new generation hypersonic vehicle. A review of the state-of-the-art of hypersonic vehicle fluid-thermal-solid coupling problem is provided. This paper briefly reviews the history and current status of the development of hypersonic vehicle. Starting from the physical definition, the coupling relationship of the hypersonic fluid-thermal-solid coupling problem in various disciplines and their modeling methods are summarized. Progress in the hypersonic vehicle fluid-thermal-solid coupling problem, especially in multidisciplinary coupling analysis strategies/methods, are summarized.The coupled analysis platform for thermal environment and structure response (FL-CAPTER) developed by China Aerodynamic Research and Development Center are introduced with respect to platform framework, function modules, coupling methods and technical features. Finally, challenges and future directions in hypersonic vehicle fluid-thermal-solid coupling problem are outlined.

Cite this article

GUI Yewei , LIU Lei , DAI Guangyue , ZHANG Litong . Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017 , 38(7) : 20844 -20844 . DOI: 10.7527/S1000-6893.2016.0310

References

[1] JR ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston: AIAA, 2006.
[2] CHASE R L, TANG M H. A history of the NASP program from the formation of the joint program office to the termination of the HySTP scramjet performance demonstration program[C]//AIAA 6th International Aerospace Planes and Hypersonics Technologies Conference. Reston: AIAA, 1995.
[3] RICKETTS R H, NOLL T E, JR WHITLOW W, et al. An overview of aeroelasticity studies for the national aero-space plane (NASP)[C]//AIAA/ASME/ASCE/AHS/ASC Structures. Reston: AIAA, 1993: 152-162.
[4] MCCLINTON C R. X-43-scramjet power breaks the hypersonic barrier: Dryden lectureship in research for 2006[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
[5] NEUENHAHN T, OLIVIER H. Development of the HyShot stabiltiy demonstrator[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2006.
[6] MANSOUR N N, PITTMAN J L, OLSON L E. Fundamental aeronautics hypersonics project: Overview[C]//39th AIAA Thermophysics Conference. Reston: AIAA, 2007.
[7] WALKER S H, RODGERS F. Falcon hypersonic technology overview[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005.
[8] KAZMAR R R. Airbreathing hypersonic propulsion at Pratt & Whitney—Overview[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005.
[9] HANK J M, MURPHY J S, MUTZMAN R C. The X-51A scramjet engine flight demonstration program[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
[10] DOLVIN D J. Hypersonic international flight research and experimentation (HIFiRE) fundamental sciences and technology development strategy[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
[11] WALKER S, TANG M, MORRIS S, et al. Falcon HTV-3X-A reusable hypersonic test bed[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
[12] OUZTS P J. The joint technology office on hypersonics[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
[13] THORNTON E A, DECHAUMPHAI P. Coupled flow, thermal, and structural analysis of aerodynamically heated panels[J]. Journal of Aircraft, 1988, 25(11): 1052-1059.
[14] MCNAMARA J J, FRIEDMANN P P. Aeroelastic and aero-thermoelastic analysis of hypersonic vehicles: Current status and future trends[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
[15] WITEOF Z D, NEERGAARD L J, VANDERWYST A S, et al. Dynamic fluid-thermal- structural interaction effects in preliminary design of high speed vehicles[C]//15th Dynamics Specialists Conference. Reston: AIAA, 2016.
[16] THORNTON E A, PAUL D B. Thermal-structural analysis of large space structures—An assessment of recent advances[J]. Journal of Spacecraft and Rockets, 1985, 22(4): 385-393.
[17] HASSAN B, KUNTZ D W, POTTER D L. Coupled fluid/thermal prediction of ablating hypersonic vehicles[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998.
[18] FARHAT C, LESOINNE M. Higher-order staggered and subiteration free algorithms for coupled dynamic aeroelasticity problems[C]//36th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998.
[19] DECHAUMPHAI P, WIETING A R, PANDEY A K. Fluid-thermal-structural interaction of aerodynamically heated leading edges[C]//30th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 1989.
[20] CULLER A J, MCNAMARA J J. Studies on fluid-thermal-structural coupling for aerothermalelasticity in hypersonic flow[J]. AIAA Journal, 2010, 48(8): 1721-1738.
[21] ROGER M. Aerothermoelasticity[J]. Aero/Space Engineering, 1958, 17(10): 34-43, 64.
[22] MCNAMARAJ J, FRIEDMANN P P. Aeroelastic and aerothermoelastic analysis in hypersonic flow: Past, present, and future[J]. AIAA Journal, 2011, 49(6): 1089-1122.
[23] 桂业伟, 刘磊, 耿湘人, 等. 气动力/热与结构多场耦合计算策略与方法研究[J]. 工程热物理学报, 2015, 36(5): 1047-1051. GUI Y W, LIU L, GENG X R, et al. Study on the computation strategy and method of aero-dynamic-thermal- structural coupling problem[J]. Journal of Engineering Thermophysics, 2015, 36(5): 1047-1051 (in Chinese).
[24] MICHOPOULOS J G, FARHAT C, FISH J. Modeling and simulation of multiphysics systems[J]. Journal of Computing and Information Science in Engineering, 2005, 5(3): 198-213.
[25] 刘磊. 高超声速飞行器热气动弹性特性及相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2014. LIU L. Study on the characteristics and similarity criteria of aerothermoelasticity for hypersonic vehicle[D]. Mianyang: China Aerodynamics Research and Development Center, 2014 (in Chinese).
[26] ASHLEY H, ZARTARIAN G. Piston theory: A new aerodynamic tool for the aeroelastician[J]. Journal of the Aeronautical Sciences, 1956, 23(12): 1109-1118.
[27] 黄志澄. 高超声速飞行器空气动力学[M]. 北京: 国防工业出版社, 1995. HUANG Z C. Hypersonic aircraft aerodynamics[M]. Beijing: National Defence Industry Press, 1995 (in Chinese).
[28] LUCIA D J, BERAN P S, SILVA W A. Reduced order modeling: New approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40(1-2): 51-117.
[29] TRIZILA P, KANG C K, VISBAL M, et al. A surrogate model approach in 2-D versus 3-D flapping wing aerodynamic analysis[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008.
[30] GLAZ B, LIU L, FRIEDMANN P P. Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework[J]. AIAA Journal, 2010, 48(10): 2418-2429.
[31] SILVA W A. Identification of nonlinear aeroelastic systems based on the Volterra theory: Progress and opportunities[J]. Nonlinear Dynamics, 2005, 39(1): 25-62.
[32] GNOFFO P A. Application of program LAURA to three-dimensional AOTV flowfields[C]//AIAA 24th Aerospace Sciences Meeting. Reston: AIAA, 1986.
[33] HENDRICKS R C, BARON A, PELLER I, et al. GASP—A computer code for calculating the thermodynamic and transport properties for eight fluids-helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide: NASA-TM-X-67895[R]. Washington, D.C.: NASA, 1971.
[34] 潘永祥, 李慎. 自然科学发展史纲要[M]. 北京: 首都师范大学出版社, 1996. PANY Y X, LI S. The history of natural science[M]. Beijing: Capital Normal University Press, 1996(in Chinese).
[35] 杨世铭, 陶文铨. 传热学[M]. 三版. 北京: 高等教育出版社, 1998. YANG S M, TAO W Q. Heat transfer theory[M]. 3rd ed. Beijing: Higher Education Press, 1998(in Chinese).
[36] 竹内洋一郎. 热应力[M]. 北京: 科学出版社, 1977. AKEUCHI H. Thermal stress[M]. Beijing: Science Press, 1977(in Chinese).
[37] WIETING A R, GUY R W. Thermal-structural design/analysis of an airframe-integrated hydrogen-cooled scramjet[J]. Journal of Aircraft, 1976, 13(3): 192-197.
[38] FALLEN D J, THORNTON E A. Integrated thermal-structural approach for shells of revolution[J]. AIAA Journal, 1983, 21(10): 1475-1477.
[39] CHEN Y K, HENLINE W D. Chemical nonequilibrium Navier-Stokes solutions for hypersonic flow over an ablating graphite nosetip[C]//AIAA 28th Thermophysics Conference. Reston: AIAA, 1993.
[40] CHEN Y K, MILOS F S. Solution strategy for thermal response of nonablating thermal protection systems at hypersonic speeds[C]//AIAA 34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996.
[41] 刘磊, 桂业伟, 耿湘人, 等. 热气动弹性变形对飞行器结构温度场的影响研究[J]. 空气动力学学报, 2015, 33(1): 31-35. LIU L, GUI Y W, GENG X R, et al. Study on the temperature field of hypersonic vehicle structure with aerothermoelasticity deformation[J]. Acta Aerodynamica Sinica, 2015, 33(1): 31-35 (in Chinese).
[42] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989, 26(4): 201-209.
[43] WIETING A R, HOLDEN M S. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8[J]. AIAA Journal, 1989, 27(11): 1557-1565.
[44] 黄唐, 毛国良, 姜贵庆, 等. 二维流场、热、结构一体化数值模拟[J]. 空气动力学学报, 2000, 18(1): 115-119. HUANG T, MAO G L, JIANG G Q, et al. Two dimensional coupled flow-thermal-structural numerical simulation[J]. Acta Aerodynamica Sinica, 2000, 18(1): 115-119 (in Chinese).
[45] 夏刚, 刘新建, 程文科, 等. 钝体高超声速气动加热与结构热传递耦合的数值计算[J]. 国防科技大学学报, 2003, 25(1): 35-39. XIA G, LIU X J, CHENG W K, et al. Numerical simulation of coupled aeroheating and solid heat penetration for hypersonic blunt body[J]. Journal of National University of Defense Technology, 2003, 25(1): 35-39 (in Chinese).
[46] 耿湘人, 张涵信, 沈清, 等. 高速飞行器流场和固体结构温度场一体化计算新方法的初步研究[J]. 空气动力学学报, 2002, 20(4): 422-427. GENG X R, ZHANG H X, SHEN Q, et al. Study on an integrated algorithm for the flowfields of high speed vehicles and the heat transfer in solid structures[J]. Acta Aerodynamica Sinica, 2002, 20(4): 422-427 (in Chinese).
[47] 赵晓利, 孙振旭, 安亦然, 等. 高超声速气动热的耦合计算方法研究[J]. 科学技术与工程, 2010, 10(22): 5450-5455. ZHAO X L, SUN Z X, AN Y R, et al. Coupled Flow-thermal analysis approach for hypersonic aerodynamic heating[J]. Science Technology and Engineering, 2010, 10(22): 5450-5455 (in Chinese).
[48] WONG C C, BLOTTNER F G, PAYNE J L. Implementation of a parallel algorithm for thermo-chemical nonequilibrium flow simulations[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1995.
[49] GARTLING D K, HOGAN R E. COYOTE Ⅱ: A finite element computer program for nonlinear heat conduction problems. Part Ⅰ: Theoretical background: SAND-94-1773[R]. Albuquerque (NM): Sandia National Labs, 1994.
[50] 董维中, 高铁锁, 丁明松, 等. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报,2015, 36(1): 311-324. DONG W Z, GAO T S, DING M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 311-324 (in Chinese).
[51] FARHAT C, VAN DER ZEE K G, GEUZAINE P. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17-18): 1973-2001.
[52] 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11. YANG C, XU Y, XIE C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11 (in Chinese).
[53] CUNNINGHAM H J. Panel-flutter analysis of a thermal protection-shield concept for the space shuttle[J]. AIAA Journal, 1972, 10(8): 1101-1103.
[54] EVENSEN D A, APRAHAMIAN R, OVEROYE K R. Pulsed differential holographic measurements of vibration modes of high temperature panels: NASA-CR-2028[R]. Washington, D.C.: NASA, 1972.
[55] JR CARSON YATES E, BENNETT R M. Analysis of supersonic-hypersonic flutter of lifting surfaces at angle of attack[J]. Journal of Aircraft, 1972, 9(7): 481-489.
[56] BENDIKSEN O O. A new approach to computational aeroelasticity: AIAA-1991-0939[R]. Reston: AIAA, 1991.
[57] HUGHES T J R, HULBERT G M. Space-time finite element methods for elastodynamics: Formulations and error estimates[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 66(3): 339-363.
[58] TEZDUYAR T E, BEHR M. A new strategy for finite element computations involving moving boundaries and interfaces: The deforming-spatial-domain/space-time procedure: Ⅰ. The concept and the preliminary numerical tests[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 339-351.
[59] MASUD A, HUGHES T J R. A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 146(1-2): 91-126.
[60] DONEA J, GUILIANI S, HALLEUX J P. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions[J]. Computer Methods in Applied Mechanics and Engineering, 1982, 33(1-3): 689-723.
[61] FARHAT C, LESOINNE M, MAMAN N. Mixed explicit/implicit time integration of coupled aeroelastic problems: Three-field formulation, geometric conservation and distributed solution[J]. International Journal for Numerical Methods in Fluids, 1995, 21(10): 807-835.
[62] BATINA J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8): 1381-1388.
[63] BARTELS R E. Mesh strategies for accurate computation of unsteady spoiler and aeroelastic problems[J]. Journal of Aircraft, 2000, 37(3): 521-525.
[64] STEPHENS C H, JR ARENA A S, GUPTA K K. Application of the transpiration method for aeroservoelastic prediction using CFD: AIAA-1998-2071[R]. Reston: AIAA, 1998.
[65] FARHAT C, LIN T Y. Transient aeroelastic computations using multiple moving frames of reference[C]//8th AIAA Applied Aerodynamics Conference. Reston: AIAA, 1990.
[66] HARTWICH P M, AGRAWAL S. Method for perturbing multiblock patched grids in aeroelastic and design optimization applications[C]//13th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 1997.
[67] STEIN K, BENNEY R, KALRO V. Parachute fluid-structure interactions: 3-D computation[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190: 373-386.
[68] CHEN P C, JADIC I. Interfacing of fluid and structural models via innovative structural boundary element method[J]. AIAA Journal, 1998, 36(2): 282-287.
[69] 徐敏, 陈士橹. CFD/CSD耦合计算研究[J]. 应用力学学报, 2004, 21(2): 33-36. XU M, CHEN S L. Study of date exchange method for coupling computational CFD/CSD[J]. Chinese Journal of Applied Mechanics, 2004, 21(2): 33-36(in Chinese).
[70] 徐敏, 史忠军, 陈士橹. 一种流体-结构耦合计算问题的网格数据交换方法[J]. 西北工业大学学报, 2003, 21(5): 532-535. XU M, SHI Z J, CHEN S L. A suitable method for transferring information between CFD and CSD grids[J]. Journal of Northwestern Polytechnical University, 2003, 21(5): 532-535 (in Chinese).
[71] 崔鹏, 韩景龙. 一种局部形式的流固耦合界面插值方法[J]. 振动与冲击, 2009, 28(10): 64-67. CUI P, HAN J L. Interface interpolation method in local form for fluid-structure interaction problems[J]. Journal of Vibration and Shock, 2009, 28(10): 64-67 (in Chinese).
[72] 安伟刚, 梁生云, 陈殿宇. 一种局部动态数据交换方法在流固耦合分析中的应用[J]. 航空学报, 2013, 34(3): 541-546. AN W G, LIANG S Y, CHEN D Y. Local dynamic data exchange in fluid structure interaction analysis[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 541-546(in Chinese).
[73] SHEPARD D. A two-dimensional interpolation function for computer mapping of irregularly spaced data: TR-15-AD-668 707[R]. Cambridge: Harvard University, 1968.
[74] HARDER R L, DESMARAIS R N. Interpolation using surface splines[J]. Journal of Aircraft, 1972, 9(2): 189-191.
[75] BUHMANN M D. Radial basis functions: Theory and implementations[M]. Cambridge, UK: Cambridge University Press, 2004.
[76] SMITH M J, HODGES D H. Evaluation of computational algorithms suitable for fluid-structure interactions[J]. Journal of Aircraft, 2000, 37(2): 282-294.
[77] DE BOERA, BIJL H, VAN ZUIJLEN A. Comparing different methods for the coupling of non-matching meshes in fluid-structure interaction computations[C]//17th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2005.
[78] RENDALL T C S, ALLEN C B. An efficient fluid-structure interpolation and mesh motion scheme for large aeroelastic simulations[C]//26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008.
[79] JAIMAN R K, JIAO X, GEUBELLE P H, et al. Assessment of conservative load transfer for fluid-solid interface with non-matching meshes[J]. International Journal for Numerical Methods in Engineering, 2005, 64(15): 2014-2038.
[80] RENDALL T C S, ALLEN C B. Improved radial basis function fluid-structure coupling via efficient localized implementation[J]. International Journal for Numerical Methods in Engineering, 2009, 78(10): 1188-1208.
[81] 陈利丽, 宋笔锋, 宋文萍, 等. 一种基于结构动力学的柔性扑翼气动结构耦合方法研究[J]. 航空学报, 2013, 34(12): 2668-2681. CHEN L L, SONG B F, SONG W P, et al. Research on aerodynamic-structural coupling of flexible flapping wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2668-2681 (in Chinese).
[82] STRGANAC T W, MOOK D T. Numerical model of unsteady subsonic aeroelastic behavior[J]. AIAA Journal, 1990, 28(5): 903-909.
[83] MORTON S A, MELVILLE R B, VISBAL M R. Accuracy and coupling issues of aeroelastic Navier-Stokes solutions on deforming meshes[J]. Journal of Aircraft, 1998, 35(5): 798-805.
[84] GORDNIER R E, MELVILLE R B. Transonic flutter simulations using an implicit aeroelastic solver[J]. Journal of Aircraft, 2000, 37(5): 872-879.
[85] GAO X W, CHEN P C, TANG L. Deforming mesh for computational aeroelasticity using a nonlinear elastic boundary element method[J]. AIAA Journal, 2001, 40(8): 1512-1517.
[86] MENKES E G, HOUBOLT J C. Evaluation of aerothermoelasticity problems for unmanned Mars-entry vehicles[J]. Journal of Spacecraft and Rockets, 1969, 6(2): 178-184.
[87] ERICSSON L E, ALMROTH B O, BAILIE J A. Hypersonic aerothennoelastic characteristics of a finned missile[J]. Journal of Spacecraft and Rockets, 1979, 16(3): 187-192.
[88] JR DOGGETT R V, RICKETTS R H, NOLL T E, et al. NASP aeroservothermoelasticity studies: NASA-TM-104058[R]. Washington, D.C.: NASA, 1991.
[89] 张伟伟, 夏巍, 叶正寅. 一种高超音速热气动弹性数值研究方法[J]. 工程力学, 2006, 23(2): 41-46. ZHANG W W, XIA W, YE Z Y. A numerical method for hypersonic aerothermoelasticity[J]. Engineering Mechanics, 2006, 23(2): 41-46(in Chinese).
[90] CULLER A J, CROWELL A R, MCNAMARA J J. Studies on fluid-structural coupling for aerothermoelasticity in hypersonic flow[C]//50th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009.
[91] POURTAKDOUST S H, FAZELZADEH S A. Nonlinear aerothermoelastic behavior of skin panel with wall shear stress effect[J]. Journal of Thermal Stresses, 2005, 28(2): 147-169.
[92] ABBAS J F, IBRAHIM R A, GIBSON R F. Nonlinear flutter of orthotropic composite panel under aerodynamic heating[J]. AIAA Journal, 1993, 31(8): 1478-1488.
[93] SCHAEFFER H G, JR HEARD W L. Flutter of a simply supported panel subjected to a nonlinear temperature distribution and supersonic flow[C]//AIAA 2nd Aerospace Sciences Meeting. Reston: AIAA, 1965.
[94] CULLER A J, MCNAMARA J J. Fluid-thermal-structural modeling and analysis of hypersonic structures under combined loading[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011.
[95] GEE D J, SIPCIC S R. Coupled thermal model for nonlinear panel flutter[J]. AIAA Journal, 1999, 37(5): 642-650.
[96] MEI C, ABDEI-MOTAGALY K, CHEN R. Review of nonlinear panel flutter at supersonic and hypersonic speeds[J]. Applied Mechanics Reviews, 1999, 52(10): 321-332.
[97] MCNAMARA J J, CROWELL A R, FRIEDMANN P P, et al. Approximate modeling of unsteady aerodynamics for hypersonic aeroelasticity[J]. Journal of Aircraft, 2010, 47(6): 1932-1945.
[98] CULLER A J, MCNAMARA J J. Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels[J]. AIAA Journal, 2011, 49(11): 2393-2406.
[99] MEI C, GRAY C E. A finite-element method for large-amplitude, two-dimensional panel flutter at hypersonic speeds[C]//30th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 1989.
[100] NYDICK I, FRIEDMANNAT P P, ZHONG X L. Hypersonic panel flutter studies on cruved panel: AIAA-1995-3011[R]. Reston: AIAA, 1995.
[101] SELVAM R P, QU Z Q, ZHENG Q. Three-dimensional nonlinear panel flutter at supersonic Euler flow[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002.
[102] GUPTA K K, VOELKER L S, BACH C, et al. CFD-based aeroelastic analysis of the X-43 hypersonic flight vehicle[C]//39th Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2001.
[103] THAREJA R R, STEWART J R, HASSAN O, et al. A point implicit unstructured grid solver for the Euler and Navier-Stokes equations[C]//AIAA 26th Aerospace Sciences Meeting. Reston: AIAA, 1988.
[104] DECHAUMPHAI P. Evaluation of an adaptive unstructured remeshing technique for integrated fluid-thermal-structural analysis[J]. Journal of Thermophysics and Heat Transfer, 1991, 5(4): 599-606.
[105] LOHNER R, YANG C, CEBRAL J, et al. Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids[C]//29th AIAA Fluid Dynamics Conference. Reston: AIAA, 1998.
[106] KONTINOS D. Coupled thermal analysis method with application to metallic thermal protection panels[J]. Journal of Thermophysics and Heat Transfer, 1997, 11(2): 173-181.
[107] KONTINOS D A, PALMER G. Numerical simulation of metallic thermal protection system panel bowing[J]. Journal of Spacecraft and Rockets, 1999, 36(6): 842-849.
[108] TRAN H, FARHAT C. An integrated platform for the simulation of fluid-structure-thermal interaction problems[C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002.
[109] HAUPT M C, NIESNER R, UNGER R, et al. Computational aero-structural coupling for hypersonic applications[C]//9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston: AIAA, 2006.
[110] MILLER B A, MCNAMARA J J. Loosely coupled time-marching of fluid-thermal-structural interactions with time-accurate CFD[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015.
[111] MILLER B A, CROWELL A R, MCNAMARA J J. Loosely coupled time-marching of fluid-thermal-structural interactions[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
[112] MILLER B A, MCNAMARA J J. Efficient time-marching of fluid-thermal-structural interactions[C]//55th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2014.
[113] LEVETT M A, LIANG Z X, MILLER B A, et al. Investigation into parallel time marching of fluid-thermal-structural interactions[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015.
[114] 张昊元. 高超声速飞行器前缘缝隙流动气动热环境数值模拟研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012. ZHANG H Y. Numerical investigation for aerodynamic heating environment on leading-edge gap of hypersonic vehicle[D]. Mianyang: China Aerodynamics Research and Development Center, 2012 (in Chinese).
[115] LANEY C B. Computational gas dynamics[M]. Cambridge: Cambridge University Press, 1998.
[116] SCOTT J N, NIU Y Y. Comparison of limiters in flux-split algorithms for Euler equations[C]//31st Aerospace Sciences Meeting. Reston: AIAA, 1993.
[117] YOON S, KWAK D, CHANG L. LU-SGS implicit algorithm for three-dimensional incompressible Navier-Stokes equations with source term[C]//9th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 1989.
[118] INCROPERA F P, DEWITT D P, DERGMAN T L, et al. Fundamentals of heat and mass transfer[M]. 6th ed. New York: John Wiley & Sons, Inc., 2007.
[119] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001. TAO W Q. Numerical heat transfer[M]. Xi’an: Xi’an Jiaotong University Press, 2001(in Chinese).
[120] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003. WANG X C. The finite element method[M]. Beijing: Tsinghua University Press, 2003 (in Chinese).
[121] GALBRAITH M C, MILLER J H. Development and application of a general interpolation algorithm[C]//24th Applied Aerodynamics Conference. Reston: AIAA, 2006.
[122] BATHE K J, ZHANG H, JI S H. Finite element analysis of fluid flows fully coupled with structural interactions[J]. Computers and Structures, 1999, 72(1-3): 1-16.
[123] GOURAG S L, BADCOCK K J WOODGATE M A, et al. A data exchange method for fluid-structure interaction problems[J]. The Aeronautical Journal, 2001, 105(1046): 215-221.

Outlines

/