ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Equivalent Degradation of Aviation Organic Coating During Indoor Accelerated Testing and Outdoor Exposure
Received date: 2013-12-11
Revised date: 2013-12-30
Online published: 2014-03-17
Supported by
National Natural Science Foundation of China(51071144); National Defense Technology Foundation Project(H052011A001)
The relationship between indoor accelerated testing and outdoor exposure in terms of equivalent degradation in aviation organic coating is studied in order to provide fundamental data for the life prediction of aircraft skin. Long-term outdoor exposure and indoor accelerated testing of the coating are carried out, with surface morphology periodically examined. Electrochemical impedance spectroscopy (EIS) is used to quantitatively analyze the damage of organic coating. Thus, the degradation behavior of the coating in indoor accelerated testing and tropical marine atmosphere for 5 years is investigated. It is found that the central area of organic coating specimen is intact after 7 cycles of indoor accelerated testing and 5 years outdoor exposure, but exhibits significant decrease in electrochemical impedance modulus. The organic coating's correlation coefficient (ρ) between outdoor exposure and indoor accelerated testing is 0.77. The degradation of organic coating after 6 cycles of indoor accelerated testing is equivalent to that after 3 years outdoor exposure in Wanning, Hainan. 3 years outdoor exposure or 5 cycles of indoor accelerated testing led to the fact that the special frequence electrochemical impedance modulus |Z|f=0.1 of organic coating specimen is in the same order with |Z|f=0.1 of alloy substrate. Since then, the organic coating which is comprised of zinc yellow acrylic polypropylene and fluorinated polyurethane fails to protect the alloy any more.
LUO Chen , CAI Jianping , XU Guangxing , ZHAO Liangliang , LIU Ming , SUN Zhihua , TANG Zhihui , LU Feng . Equivalent Degradation of Aviation Organic Coating During Indoor Accelerated Testing and Outdoor Exposure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(6) : 1750 -1758 . DOI: 10.7527/S1000-6893.2014.0007
[1] Wang H, Xuan W F, Liu J, et al. Weathering analysis of fluorine containing polyurethane coating for aircraft skin[J]. Equipment Environmental Engineering, 2011, 8(5): 43-46. (in Chinese) 王辉, 宣卫芳, 刘静, 等. 飞机蒙皮用含氟聚氨酯涂层老化原因分析[J]. 装备环境工程, 2011, 8(5): 43-46.
[2] Sun Z H, Zhang N, Cai J P, et al. Impedance of aviation aluminium alloy/coating system before and after accelerated testing//Proceeding of High Level Forum in The Key Technologies for Large Aircraft and 2007 Chinese Society of Aeronautics and Astronautics Annual Conference. Shenzhen: Chinese Aviation Institute, 2007: 1-7.(in Chinese) 孙志华, 章妮, 蔡建平, 等. 航空铝合金/涂层体系模拟加速试验前后的阻抗变化//大型飞机关键技术高层论坛暨中国航空学会2007年年会论文集. 深圳: 中国航空学会, 2007: 1-7.
[3] Sun Z H, Zhang N, Cai J P, et al. Study on accelerated aging test of containing fluorine polyurethane topcoat applied in aircraft[J]. Journal of Materials Engineering, 2009(10): 57-60. (in Chinese) 孙志华, 章妮, 蔡建平, 等. 航空用氟聚氨酯涂层加速老化试验研究[J]. 材料工程, 2009(10): 57-60.
[4] Sun Z H, Zhang N, Cai J P, et al. Electrochemical impedance varieties of zinc yellow polypropylene coated aluminum alloy used in aircraft during the accelerated degradation test[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 746-751. (in Chinese) 孙志华, 章妮, 蔡健平, 等. 航空铝合金涂层体系加速老化试验前后电化学阻抗变化[J]. 航空学报, 2008, 29(3): 746-751.
[5] Sun Z H, Liu M H, Zou L M, et al. Study on atmospheric corrosion of aluminum alloy by Kelvin probe technique[J]. Corrosion Science and Protection Technology, 2006, 18(2): 87-91. (in Chinese) 孙志华, 刘明辉, 邹礼明, 等. 用Kelvin探头技术研究铝合金的大气腐蚀[J]. 腐蚀科学与防护技术, 2006, 18(2): 87-91.
[6] Zhang N, Sun Z H, Zhang Q, et al. Application of local electrochemical impedance spectroscopy (LEIS) on assessing the environmental failure of organic coatings[J]. Equipment Environmental Engineering, 2007, 4(1): 75-78. (in Chinese) 章妮, 孙志华, 张琦, 等. 局部阻抗测试技术在评定有机涂层环境失效中的应用[J]. 装备环境工程, 2007, 4(1): 75-78.
[7] Sun Z H, Cai J P, Liu M, et al. Review on electrochemical investigation methods of environmental failure at metal/organic interface[J]. Equipment Environmental Engineering, 2007, 4(4): 1-5. (in Chinese) 孙志华, 蔡健平, 刘明, 等. 金属/有机涂层环境失效的电化学研究方法[J]. 装备环境工程, 2007, 4(4): 1-5.
[8] Liu W T, Li Y H. Systematic determining method of calendar life in aircraft structure[M]. Beijing: Aviation Industry Press, 2004: 64. (in Chinese) 刘文梃, 李玉海. 飞机结构日历寿命体系评定技术[M]. 北京: 航空工业出版社, 2004: 64.
[9] Li Y H, Liu W T, Yang X, et al. Systematic calendar life determining in military aircraft structure[M]. Beijing: Aviation Industry Press, 2005: 208. (in Chinese) 李玉海, 刘文梃, 杨旭, 等. 军用飞机结构日历寿命体系评定应用范例[M]. 北京: 航空工业出版社, 2005: 208.
[10] Tanabe H, Nagai C, Matsumoto G, et al. 20 years outdoor exposure of Fluororesin Topcoat//Proceeding of the 24th Annual Information Conference of National Coating Industry and the 4th International Symposium in Anti-corrosion Coating and Anti-corrosion Technologies for Marine Petrol Industry. Beijing: Chemical Industry and Engineering Society of China, 2007: 182-187. (in Chinese) 田边弘往, 永井昌惠, 松本刚, 等. 氟树脂面漆20年室外暴露结果//第24次全国涂料工业信息年会暨第4届国际防腐蚀涂料及海洋石油工业防腐技术研讨会论文集. 北京: 中国化工学会, 2007: 182-187.
[11] Cocuzzi D A, Pilcher G R. Ten-year exterior durability test results compared to various accelerated weathering devices: Joint study between ASTM International and National Coil Coatings Association[J]. Progress in Organic Coatings, 2013, 76(6): 979-984.
[12] Luo C, Cai J P, Liu M, et al. Effect of pre-strain on the protective properties of aviation organic coating[J], Journal of Materials Engineering(in press).(in Chinese) 骆晨, 蔡键平, 刘明, 等. 外加应变状态对航空有机涂层防护性能的影响研究[J]. 材料工程(待发表).
[13] Santos D, Costa M R, Santos M T. Performance of polyester and modified polyester coil coatings exposed in different environments with high UV radiation[J]. Progress in Organic Coatings, 2007, 58(4): 296-302.
[14] Deflorian F, Rossi S, Fedrizzi L, et al. Comparison of organic coating accelerated tests and natural weathering considering meteorological data[J]. Progress in Organic Coatings, 2007, 59 (3): 244-250.
[15] Aviation Industry Corporation of China. HB/Z 233—1993 Anodizing of aluminum and aluminium alloy[S]. Beijing: China Aero-Polytechnology Establishment, 1994: 1-9. (in Chinese) 中国航空工业总公司. HB/Z 233—1993 铝及铝合金硫酸阳极氧化工艺[S]. 北京: 中国航空工业总公司第三〇一研究所, 1994: 1-9.
[16] Ma H R, He X Z, Wu H L, et al. Introduction to the natural environmental test station network of national defence science[M]. Beijing: Aviation Industry Press, 2008: 7. (in Chinese) 马恒儒, 何新洲, 吴护林, 等. 国防科技工业自然环境试验站网指南[M]. 北京: 航空工业出版社, 2008: 7.
[17] Cai J P, Liu M, Sun Z H, et al. Comprehensive accelerated testing method for protective organic coatings: China, ZL200810076991.6. 2008-10-22. (in Chinese) 蔡健平, 刘明, 孙志华, 等. 有机防护涂层综合加速试验方法: 中国, ZL200810076991.6. 2008-10-22.
[18] Bierwagen G, Tallman D, Li J, et al. EIS studies of coated metals in accelerated exposure[J]. Progress in Organic Coatings, 2003, 46(2): 149-158.
[19] Sun Z H, Zhang N, Cai J P, et al. Electrochemical behavior of an anodic oxidation film on aluminum alloy 7B04[J]. Corrosion Science and Protection Technology, 2009, 21(3): 281-284. (in Chinese) 孙志华, 章妮, 蔡建平, 等. 7B04铝合金的一种阳极氧化膜层电化学性能研究[J]. 腐蚀科学与防护技术, 2009, 21(3): 281-284.
/
〈 | 〉 |