ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Rapid Modeling Technology of Rolling Mold Cavity of Aero-engine Compressor Blade
Received date: 2013-12-03
Revised date: 2014-03-04
Online published: 2014-03-07
The work presented in this paper focuses on several aspects of a new technology of rolling mold cavity modeling of the aero-engine compressor blade to adapt to the demand of rapid design and manufacture. A method is given to extract the section curves of a cold rolling blade based on the change of blade curvature in order to reduce the number of section curves while satisfying the accuracy requirements of mold cavity. Accordingly, a mapping algorithm is established for changing the spatial distribution of section curves so as to map them along with the roller surface and then fit these curves into mold cavity surfaces. Then the mold cavities are acquired by Boolean operations of rotators and cavity surfaces. Finally, a modeling system, using the general CAD software as platform, is developed by applying the above method. The study shows that the method is able to realize rapid modeling and the efficiency of rolling mold modeling is improved dramatically.
WANG Yuanbin , WANG Wenhu , ZHANG Yan , XIE Xiaona . Rapid Modeling Technology of Rolling Mold Cavity of Aero-engine Compressor Blade[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(11) : 3190 -3198 . DOI: 10.7527/S1000-6893.2014.0006
[1] Bracke L,Verbeken K,Kestens L,et al. Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel[J]. Acta Materialia,2009,57(5): 1512-1524.
[2] Hedayati A,Najafizadeh A,Kermanpur A,et al. The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel[J]. Journal of Materials Processing Technology, 2010, 210(8): 1017-1022.
[3] Li L, Ungár T, Wang Y D, et al. Microstructure evolution during cold rolling in a nanocrystalline Ni-Fe alloy determined by synchrotron X-ray diffraction[J]. Acta Materialia, 2009, 57(17): 4988-5000.
[4] Brahme A, Winning M, Raabe D. Prediction of cold rolling texture of steels using an artificial neural network[J]. Computational Materials Science, 2009, 46(4): 800-804.
[5] Liu W C, Chen Z L, Xiao F R, et al. Effect of cold rolling on the precipitation behavior of δ phase and γ″ phase in inconel 718[J]. Acta Aeronautica et Astronautica Sinica,1999, 20(3): 279-282.(in Chinese) 刘文昌, 陈宗霖, 肖福仁, 等. 冷轧变形对Inconel718合金δ相γ″相析出行为的影响[J]. 航空学报, 1999, 20(3): 279-282.
[6] Sedighi M, Mahmoodi M. An approach to simulate cold roll-forging of turbo-engine thin compressor blade[J]. Aircraft Engineering and Aerospace Technology, 2009, 81(3): 191-198.
[7] Akgerman N, Lahoti G D, Altan T. Computer-aided roll pass design in rolling of airfoil shapes[J]. Journal of Applied Metalworking, 1980, 1(3): 30-40.
[8] Klocke F, Mader S. Fundamentals of the deep rolling of compressor blades for turbo aircraft engines[J]. Steel Research International, 2005, 76(2-3): 229-235.
[9] Gunasekera J S, Belinski R A. A Investigation of the pinch and roll process of compressor airfoil manufacture[J]. CIRP Annals-Manufacturing Technology,2000, 49(1): 181-184.
[10] Yu J M, Zhang Z M, Li G J. The numerical simulation of blade rolling process[J]. Missiles and Guidance, 2006, 26(1): 833-835. (in Chinese) 于建民, 张治民, 李国俊. 叶片辊轧工艺数值模拟研究[J]. 弹箭与制导学报, 2006, 26(1): 833-835.
[11] Mao J, Meng H, Chen H Y, et al. Comparative analysis and research on hot rolling and cold rolling process of aero-engine blade[J]. Hot Working Technology, 2013, 42(13): 84-86. (in Chinese) 毛君, 孟辉, 陈洪月, 等. 航空发动机叶片热轧与冷轧过程对比分析与研究[J]. 热加工工艺, 2013, 42(13): 84-86.
[12] Mao J, Zhang Y, Li S L, et al. Dynamics simulation study on blade rolling process[J]. Forging & Stamping Technology, 2013, 38(1): 76-80. (in Chinese) 毛君, 张瑜, 李深亮, 等. 叶片辊轧过程动力学仿真研究[J]. 锻压技术, 2013, 38(1): 76-80.
[13] Zhou D. Simulation and analysis of blade cold roll forming process[D]. Shenyang:Northeastern University, 2010. (in Chinese) 周道. 航空叶片冷辊轧过程仿真分析[D]. 沈阳:东北大学, 2010.
[14] Feng Y J. Study of microstructure and mechanical property of forged and cold rolled GH4169 alloy blade[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese) 冯莹娟. 锻造-冷辊轧GH4169合金叶片组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
[15] Matin I, Hadzistevic M, Hodolic J, et al. A CAD/CAE-integrated injection mold design system for plastic products[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63(5-8): 595-607.
[16] Guo Y, Hu J, Peng Y H. A CBR system for injection mould design based on ontology:a case study[J]. Computer-Aided Design, 2012, 44(6): 496-508.
[17] Yang H L, Tong S G, Wu R R. Automation technology of injection mold design based on case-based reasoning[J]. Chinese Journal of Mechanical Engineering, 2008, 44(10): 288-293. (in Chinese) 杨化林, 童水光, 吴荣仁. 基于范例推理的注塑模具设计自动化技术[J]. 机械工程学报, 2008, 44(10): 288-293.
[18] Kumar S, Singh R. An automated design system for progressive die[J]. Expert Systems with Applications, 2011, 38(4): 4482- 4489.
[19] Jiang R S, Zhang D H, Wang W H, et al. Intelligent design of investment casting mold based on a hybrid reasoning method[J]. Research & Development, 2009, 6(1): 20-23.
[20] Jiang R S, Zhang D H, Wang W H. Research on the intelligent design system for investment casting die of aero-engine turbine blade based on knowledge[J]. Journal of Aerospace Power, 2010, 25(5): 1061-1067.
[21] Chen J, Wang G J. Optimal parameterizations of the degree 2 rational Bézier curves[J]. Journal of Computer Research and Development, 2008, 45(9): 1601-1604. (in Chinese) 陈军, 王国瑾. 2次有理Bézier曲线的最优参数化[J]. 计算机研究与发展, 2008, 45(9): 1601-1604.
[22] Zhang L N, Zhang D H, Chen Z Q. Calculation method on central arced curve of blade section based on equidistance line[J]. Journal of Machine Design, 2006, 23(5): 39-41. (in Chinese) 张力宁, 张定华, 陈志强. 基于等距线的叶片截面中弧线计算方法[J]. 机械设计, 2006, 23(5): 39-41.
[23] Hu S M, Wallner J. A second order algorithm for orthogonal projection onto curves and surfaces[J]. Computer Aided Geometric Design, 2005, 22(3): 251-260.
[24] Mo R, Chang Z Y. Computer-aided geometric modeling techniques[M]. Beijing: Science Press, 2009: 90-91 (in Chinese) 莫蓉, 常智勇. 计算机辅助几何造型技术[M]. 北京:科学出版社, 2009: 90-91.
/
〈 | 〉 |