ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Comparative Research on the Dynamic Rolling Characteristics of Double Delta Wing and Wing-body Configuration
Received date: 2013-03-19
Revised date: 2013-04-28
Online published: 2013-05-17
Supported by
National Natural Science Foundation of China (11202165)
This paper establishes a coupled computation system which solves the Navier-Stokes equations and the rolling motion equation alternatively to obtain the rolling motion characteristics of two double delta wing models with different sweep angles and a wing-body configuration. It reveals the effect of the leading edge sweep angle and the slender body on the unsteady rolling moment, the dynamic flowfield and the transient surface pressure distribution. The results show conclusively that the energy dissipation of the merged vortex upon the windward side of the 80°/60° double delta wing is much slighter than that upon the 76°/40° model. The merged vortex energy determines the time lag effect of the dynamic flowfield and the rolling moment. The presence of a slender body dramatically enhances the amplitude of the linear component of the rolling moment. Furthermore, the upwash airstreams around the slender body enhances the suction of the strake, the merged vortex suction and its hysteresis effect. The block of the cross flow caused by the slender body enlarges the time lag of the pressure distribution on the leeward side of the main wing. In general, these results may benefit the understanding for the mechanism of the effect of the sweep angle and slender body on rolling characteristics
HAN Bing , XU Min , LI Guangning , AN Xiaomin . Comparative Research on the Dynamic Rolling Characteristics of Double Delta Wing and Wing-body Configuration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(2) : 417 -426 . DOI: 10.7527/S1000-6893.2013.0246
[1] Ericsson L E. The fluid mechanics of slender wing rock[J]. Journal of Aircraft, 1984, 21(5): 322-328.
[2] Ericsson L E. Wing rock of nonslender delta wings[J]. Journal of Aircraft, 2001, 38(1): 36-41.
[3] Atashbaz G, Ommian M. Experimental investigation of vortex flow over an 80 degree/60 degree double delta wing at sideslip[J]. Journal of Aircraft, 2006, 43(3): 840-842.
[4] Liu W, Yang X L, Zhang H X, et al. A review on investigations of wing rock problems under high angle of attack[J]. Advances in Mechanics, 2008, 38(2): 214-228. (in Chinese) 刘伟, 杨小亮, 张涵信, 等.大攻角运动时的机翼摇滚问题研究综述[J].力学进展, 2008, 38(2): 214-228.
[5] Liu X, Lin J Z, Chen L Z, et al. Numerical simulation of unsteady flow around double-delta wing during pitching motion[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 984-993. (in Chinese) 刘昕, 林敬周, 陈亮中, 等.双三角翼俯仰振荡运动的流场特性数值模拟[J].航空学报, 2012, 33(6): 984-993.
[6] Sohn M H, Chang J W. Effect of a centerbody on the vortex flow of a double-delta wing with leading edge extension[J]. Aerospace Science and Technology, 2010, 14: 11-18.
[7] Li G N. Numerical simulations of Navier-Stokes flows about full aircraft configuration and the developing of CFD program[D]. Xi'an: College of Aeronautics, Northwestern Polytechnical University, 2010. (in Chinese) 李广宁.全机实用外形绕流Navier-Stokes方程数值模拟及其软件开发研究[D].西安: 西北工业大学航空学院, 2010.
[8] Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows, AIAA-1992-0439[R]. Reston: AIAA, 1992.
[9] Roe P. Approximate riemann solvers, parametric vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43: 357-372.
[10] Rizzi A, Eliasson P, Lindblad I, et al. The engineering of multiblock/multigrid software for navier-stokes flows on structured meshes[J]. Computers & Fluids, 1993, 22: 341-367.
[11] Lesoinne M, Farhat C. Geometric conservation laws for flow problems with moving boundaries and deformable meshes and their impact on aeroelastic computations[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 134: 71-90.
[12] Landon R H. NACA0012 oscillatory and transient pitching, AGARD Report 702[R]. France: NATO Research and Technology Organization BP 25, F92201 Neuilly Sur Seine, 1982.
[13] den Boer R G, Cunningham Jr A M. Low-speed unsteady aerodynamics of a pitching straked wing at high incidence—part I: test program[J]. Journal of Aircraft, 1990, 27(1): 23-30.
[14] Li F W, E Q, Li J, et al. Mesh generation technique for complex aerodynamic configurations[J]. Acta Aerodynamic Sinica, 1998, 16(1): 89-96. (in Chinese) 李凤蔚, 鄂秦, 李杰, 等.复杂外形网格生成技术[J].空气动力学学报, 1998, 16(1): 89-96.
[15] Shigeru A, Yasuhiro T, Shigeki T, et al. A study on aerodynamic characteristics of lifting body and wing body configurations for fully reusable launch vehicles, AIAA-2004-2536[R]. Reston: AIAA, 2004.
/
〈 | 〉 |