1 |
MAUL W A, KOPASAKIS G, SANTI L M, et al. Sensor selection and optimization for health assessment of aerospace systems[J]. Journal of Aerospace Computing, Information, and Communication, 2008, 5(1): 16-34.
|
2 |
郑帅, 王子涵, 赵浩然, 等. 基于差分进化算法的飞机油量传感器布局优化方法[J]. 航空学报, 2022, 43(8): 125809.
|
|
ZHENG S, WANG Z H, ZHAO H R, et al. Layout optimization method of aircraft fuel gauging sensor based on differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125809 (in Chinese).
|
3 |
JUNG K, YANG J, LEE S, et al. Design optimization of fuel sensor location in aircraft conformal fuel tank[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2018, 46(4): 332-337.
|
4 |
PEREIRA J L J, FRANCISCO M B, DE OLIVEIRA L A, et al. Multi-objective sensor placement optimization of helicopter rotor blade based on Feature Selection[J]. Mechanical Systems and Signal Processing, 2022, 180: 109466.
|
5 |
OMATA N, SATOH D, TSUTSUMI S, et al. Model-based supervised sensor placement optimization to detect propellant leak in a liquid rocket engine[J]. Acta Astronautica, 2022, 195: 234-242.
|
6 |
徐敏强, 宋其江, 王日新. 基于可观测性和可靠性的传感器分布优化设计[J]. 宇航学报, 2010, 31(11): 2618-2622.
|
|
XU M Q, SONG Q J, WANG R X. Optimization design of sensors location based on fault observability and reliability[J]. Journal of Astronautics, 2010, 31(11): 2618-2622 (in Chinese).
|
7 |
杨冬健, 靳小波, 杨占才, 等. 基于MINLP模型的航空液压系统传感器布局优化[J]. 测控技术, 2020, 39(5): 49-53.
|
|
YANG D J, JIN X B, YANG Z C, et al. Optimization of sensor layout in aero-hydraulic system based on MINIP model[J]. Measurement & Control Technology, 2020, 39(5): 49-53 (in Chinese).
|
8 |
张笑华, 吴圣斌, 方圣恩, 等. 采用Pareto人工鱼群算法的结构健康监测传感器位置多目标优化[J]. 振动工程学报, 2022, 35(2): 351-358.
|
|
ZHANG X H, WU S B, FANG S E, et al. Multi-objective sensor optimal placement for structural health monitoring based on Pareto artificial fish swarm algorithm[J]. Journal of Vibration Engineering, 2022, 35(2): 351-358 (in Chinese).
|
9 |
LI B B, LI D S, ZHAO X F, et al. Optimal sensor placement in health monitoring of suspension bridge[J]. Science China Technological Sciences, 2012, 55(7): 2039-2047.
|
10 |
LIU K, YAN R J, GUEDES SOARES C. Optimal sensor placement and assessment for modal identification[J]. Ocean Engineering, 2018, 165: 209-220.
|
11 |
KONG X D, CAI B P, LIU Y H, et al. Optimal sensor placement methodology of hydraulic control system for fault diagnosis[J]. Mechanical Systems and Signal Processing, 2022, 174: 109069.
|
12 |
LI B B, DER KIUREGHIAN A. Robust optimal sensor placement for operational modal analysis based on maximum expected utility[J]. Mechanical Systems and Signal Processing, 2016, 75: 155-175.
|
13 |
LI B, ZHAO Y P, WU H, et al. Optimal sensor placement using data-driven sparse learning method with application to pattern classification of hypersonic inlet[J]. Mechanical Systems and Signal Processing, 2021, 147: 107110.
|
14 |
BŁACHOWSKI B, ŚWIERCZ A, OSTROWSKI M, et al. Convex relaxation for efficient sensor layout optimization in large-scale structures subjected to moving loads[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(10): 1085-1100.
|
15 |
TARAVATROOY N, NIKOO M R, HOBBI S, et al. A novel hybrid entropy-clustering approach for optimal placement of pressure sensors for leakage detection in water distribution systems under uncertainty[J]. Urban Water Journal, 2020, 17(3): 185-198.
|
16 |
MORLIER J, BASILE A, CHIPLUNKAR A, et al. An EGO-like optimization framework for sensor placement optimization in modal analysis[J]. Smart Materials and Structures, 2018, 27(7): 075004.
|
17 |
沈赤兵. 液体火箭发动机非线性静特性与响应特征[M]. 北京: 科学出版社, 2019.
|
|
SHEN C B. Nonlinear static characteristics and response characteristics of liquid rocket engines[M]. Beijing: Science Press, 2019.
|
18 |
GENTLE J E, KAUFMAN L, ROUSSEUW P J. Finding groups in data: An introduction to cluster analysis[J]. Biometrics, 1991, 47(2): 788.
|
19 |
JAIN A K, MURTY M N, FLYNN P J. Data clustering: a review[J]. ACM Computing Surveys, 31(3): 264-323.
|
20 |
DAVIES D L, BOULDIN D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979(2): 224-227.
|
21 |
DUNN J C. Well-separated clusters and optimal fuzzy partitions[J]. Journal of Cybernetics, 1974, 4(1): 95-104.
|
22 |
PEDRASA M A A, SPOONER T D, MACGILL I F. Scheduling of demand side resources using binary particle swarm optimization[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1173-1181.
|
23 |
黄洋, 鲁海燕, 许凯波, 等. 基于S型函数的自适应粒子群优化算法[J]. 计算机科学, 2019, 46(1): 245-250.
|
|
HUANG Y, LU H Y, XU K B, et al. S-shaped function based adaptive particle swarm optimization algorithm[J]. Computer Science, 2019, 46(1): 245-250 (in Chinese).
|
24 |
陈贵敏, 贾建援, 韩琪. 粒子群优化算法的惯性权值递减策略研究[J]. 西安交通大学学报, 2006, 40(1): 53-56, 61.
|
|
CHEN G M, JIA J Y, HAN Q. Study on the strategy of decreasing inertia weight in particle swarm optimization algorithm[J]. Journal of Xi’an Jiaotong University, 2006, 40(1): 53-56, 61 (in Chinese).
|