1 |
彭喜元, 庞景月, 彭宇, 等. 航天器遥测数据异常检测综述 [J]. 仪器仪表学报, 2016, 37(9): 1929-1945.
|
|
PENG X Y, PANG J Y, PENG Y, et al. Review on anomaly detection of spacecraft telemetry data [J]. Chinese Journal of Scientific Instrument, 2016, 37(9): 1929-1945 (in Chinese).
|
2 |
张华, 沈嵘康, 宗益燕, 等. 遥感卫星在轨故障统计与分析 [J]. 航天器环境工程, 2015, 32(3): 324-329.
|
|
ZHANG H, SHEN R K, ZONG Y Y, et al. On-orbit fault statistical analysis for remote sensing satellite [J]. Spacecraft Environment Engineering, 2015, 32(3): 324-329 (in Chinese).
|
3 |
CHEN S Y, JIN G, MA X Y. Detection and analysis of real-time anomalies in large-scale complex system [J]. Measurement, 2021, 184: 109929.
|
4 |
戴金玲, 许爱强, 申江江, 等. 基于OCKELM与增量学习的在线故障检测方法 [J]. 航空学报, 2022, 43(3): 325121
|
|
DAI J L, XU A Q, SHEN J J, et al. Online fault detection method based on incremental learning and OCKELM [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 325121 (in Chinese).
|
5 |
JIA S, MA B, GUO W, et al. A sample entropy based prognostics method for lithiumion batteries using relevance vector machine [J]. Journal of Manufacturing Systems, 2021, 61: 773-781.
|
6 |
ABDELGHAFAR S, DARWISH A, HASSANIEN A E, et al. Anomaly detection of satellite telemetry based on optimized extreme learning machine [J]. Journal of Space Safety Engineering, 2019, 6(4): 291-298.
|
7 |
HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding [C]∥ Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM Press, 2018: 387-395.
|
8 |
LIU J Q, PAN C L, LEI F, et al. Fault prediction of bearings based on LSTM and statistical process analysis [J]. Reliability Engineering & System Safety, 2021, 214: 107646.
|
9 |
VOS K, PENG Z X, JENKINS C, et al. Vibration-based anomaly detection using LSTM/SVM approaches [J]. Mechanical Systems and Signal Processing, 2022, 169: 108752.
|
10 |
董静怡, 庞景月, 彭宇, 等. 集成LSTM的航天器遥测数据异常检测方法 [J]. 仪器仪表学报, 2019, 40(7): 22-29.
|
|
DONG J Y, PANG J Y, PENG Y, et al. Spacecraft telemetry data anomaly detection method based on ensemble LSTM [J]. Chinese Journal of Scientific Instrument, 2019, 40(7): 22-29 (in Chinese).
|
11 |
闫媞锦, 夏元清, 张宏伟, 等. 一种非规则采样航空时序数据异常检测方法 [J]. 航空学报, 2021, 42(4): 525019.
|
|
YAN T J, XIA Y Q, ZHANG H W, et al. An anomaly detection method for irregularly sampled spacecraft time series data [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 525019 (in Chinese).
|
12 |
YU J, SONG Y, TANG D, et al. Telemetry data-based spacecraft anomaly detection with spatial–temporal generative adversarial networks [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-9.
|
13 |
ZHANG J T, ZENG B, SHEN W M, et al. A One-class shapelet dictionary learning method for wind turbine bearing anomaly detection [J]. Measurement, 2022,197: 111318.
|
14 |
SCHO¨LKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution [J]. Neural Computation, 2001, 13(7): 1443-1471.
|
15 |
罗鹏,王布宏,李腾耀. 基于BiGRU-SVDD的ADS-B异常数据检测模型 [J]. 航空学报, 2020, 41(10): 323878.
|
|
LUO P, WANG B H, LI T Y. ADS-B anomaly data detection model based on BiGRU-SVDD [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 323878 (in Chinese).
|
16 |
HU M, JI Z, YAN K, et al. Detecting anomalies in time series data via a meta-feature based approach [J]. IEEEAccess, 2018, 6: 27760-27776.
|
17 |
SAARI J, STRÖMBERGSSON D, LUNDBERG J, et al. Detection and identification of windmill bearing faults using a one-class support vector machine (SVM) [J]. Measurement, 2019, 137: 287-301.
|
18 |
LI C, CABRERA D, SANCHO F, et al. From fault detection to one-class severity discrimination of 3D printers with one-class support vector machine [J]. ISA Transactions, 2021, 110: 357-367.
|
19 |
段翠英. 基于模式演化的遥测数据建模方法及应用 [D]. 长沙: 国防科学技术大学, 2015.
|
|
DUAN C Y. A satellite telemetry data modeling method based on pattern evolution [D]. Changsha: National University of Defense Technology, 2015 (in Chinese).
|
20 |
董隽硕, 吴玲达, 郝红星. 稀疏表示技术与应用综述 [J]. 计算机系统应用, 2021, 30(7): 13-21.
|
|
DONG J S, WU L D, HAO H X. Survey on sparse representation techniques and applications [J]. Computer Systems & Applications, 2021, 30(7): 13-21 (in Chinese).
|
21 |
练秋生, 石保顺, 陈书贞. 字典学习模型、算法及其应用研究进展 [J]. 自动化学报, 2015, 41(2): 240-260.
|
|
LIAN Q S, SHI B S, CHEN S Z. Research advances on dictionary learning models, algorithms and applications [J]. Acta Automatica Sinica, 2015, 41(2): 240-260 (in Chinese).
|
22 |
TAKEISHI N, YAIRI T. Anomaly detection from multivariate time-series with sparse representation [C]∥ Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC).Piscataway: IEEE Press, 2014: 2651-2656.
|
23 |
DAS S, MATTHEWS B L, SRIVASTAVA A N, et al. Multiple kernel learning for heterogeneous anomaly detection: Algorithm and aviation safety case study [C]∥ Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 47-56.
|
24 |
PURANIK T G, MAVRIS D N. Anomaly detection in general-aviation operations using energy metrics and flight-data records [J]. Journal of Aerospace Information Systems, 2018, 15(1): 22-36.
|
25 |
KONG Y, WANG T Y, FENG Z P, et al. Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine [J]. Renewable Energy, 2020, 152: 754-769.
|
26 |
ADLER A, ELAD M, HEL-OR Y, et al. Sparse coding with anomaly detection [J]. Journal of Signal Processing Systems, 2015, 79(2): 179-188.
|
27 |
LIU B, XIE H X, XIAO Y S. Multi-task analysis discriminative dictionary learning for one-class learning [J]. Knowledge-Based Systems, 2021, 227: 107195.
|
28 |
AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
|
29 |
HOU C P, NIE F P, LI X L, et al. Joint embedding learning and sparse regression: A framework for unsupervised feature selection [J]. IEEE Transactions on Cybernetics, 2013, 44(6): 793-804.
|