ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (10): 127454-127454.doi: 10.7527/S1000-6893.2022.27454
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Yukun SUN1, Long WANG1(), Tongguang WANG1, Yaoru QIAN2, Quanwei ZHENG1
Received:
2022-05-16
Revised:
2022-06-01
Accepted:
2022-06-29
Online:
2023-05-25
Published:
2022-07-08
Contact:
Long WANG
E-mail:longwang@nuaa.edu.cn
Supported by:
CLC Number:
Yukun SUN, Long WANG, Tongguang WANG, Yaoru QIAN, Quanwei ZHENG. Aerodynamic characteristics and crosswind counteraction of isolated tail rotor in crosswind environment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 127454-127454.
1 | 黄明其, 王亮权, 何龙, 等. 旋翼涡环状态气动特性和参数变化的风洞试验[J]. 航空动力学报, 2019, 34(11): 2305-2315. |
HUANG M Q, WANG L Q, HE L, et al. Wind tunnel test of aerodynamic characteristics and parametric variation for rotor in vortex ring state[J]. Journal of Aerospace Power, 2019, 34(11): 2305-2315 (in Chinese). | |
2 | 李高华. 直升机旋翼涡环状态流场高分辨率数值模拟方法研究[D]. 上海: 上海交通大学, 2018: 128-129. |
LI G H. Study of high resolution numerical method for helicopter rotor in vortex ring state[D]. Shanghai: Shanghai Jiao Tong University, 2018: 128-129 (in Chinese). | |
3 | 曹栋, 曹义华. 垂直下降状态下的旋翼三维流场数值模拟[J]. 北京航空航天大学学报, 2012, 38(5): 641-647. |
CAO D, CAO Y H. Three dimensional numerical simulation of rotor in vertical descent flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5): 641-647 (in Chinese). | |
4 | DZIUBINSKI A, STALEWSKI W. Vortex ring state on modelling and simulation using actuator disc[C]∥ 21st European Conference Simulation Ecms. Prague: ECMS Press, 2007: 397-402. |
5 | GASPAROVIC P, KOVACS R, FOZO L. Numerical investigation of vortex ring state of tail rotor and uncontrolled rotation of helicopter[C]∥2016 IEEE 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI). Piscataway: IEEE Press, 2016: 269-273. |
6 | MAKEEV P V, IGNATKIN Y M, SHOMOV A I.Numerical investigation of full scale coaxial main rotor aerodynamics in hover and vertical descent[J].Chinese Journal of Aeronautics, 2021, 34(5): 666-683. |
7 | 王军杰, 俞志明, 陈仁良, 等. 倾转四旋翼飞行器垂直飞行状态气动特性[J]. 航空动力学报, 2021, 36(2): 249-263. |
WANG J J, YU Z M, CHEN R L, et al. Aerodynamic characteristics of quad tilt rotor aircraft in vertical flight[J]. Journal of Aerospace Power, 2021, 36(2): 249-263 (in Chinese). | |
8 | 王军杰, 陈仁良, 王志瑾, 等. 多旋翼飞行器涡环状态数值模拟[J]. 航空动力学报, 2020, 35(5): 1018-1028. |
WANG J J, CHEN R L, WANG Z J, et al. Numerical simulation of multi-rotor aircraft in vortex ring state[J]. Journal of Aerospace Power, 2020, 35(5): 1018-1028 (in Chinese). | |
9 | ZALEWSKI W. Numerical simulation of vortex ring state phenomenon for the mi2 type helicopter tail rotor[J]. Journal of KONES Powertrain and Transport, 2016, 23(2): 437-442. |
10 | WIESNER W, KOHLER G. Tail rotor performance in presence of main rotor, ground, and winds[J]. Journal of the American Helicopter Society, 1974, 19(3): 2-9. |
11 | EFIMOV V V, CHERNIGIN K O. Vortex ring state as a cause of a single-rotor helicopter unanticipated yaw[J]. Aerospace Systems, 2022, 5(3): 413-418. |
12 | GUBBELS A W, CARIGNAN S J R P. Handling qualities assessment of the effects of tail boom strakes on the Bell 412 helicopter[J]. Aerospace Science and Technology, 2005, 9(5): 436-444. |
13 | 沙虹伟. 尾桨倾斜和可动平尾对直升机性能/品质影响及设计方法研究[D]. 南京: 南京航空航天大学, 2013: 34-42. |
SHA H W. Research on the influence of tail rotor tilting and movable stabilator on helicopter performance/flying qualities and designing method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 34-42. (in Chinese) | |
14 | EBRAHIMI M, JAHANGIRIAN A. A hierarchical parallel strategy for aerodynamic shape optimization with genetic algorithm[J]. Scientia Iranica, 2015, 22(6): 2379-2388. |
15 | TIMNAK N, JAHANGIRIAN A. Multi-point optimization of transonic airfoils using an enhanced genetic algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(7): 1347-1360. |
16 | JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3): 233-260. |
17 | MARTINS J R R A, KROO I, ALONSO J. An automated method for sensitivity analysis using complex variables[C]∥38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000: 689. |
18 | KIM S, ALONSO J J, JAMESON A. Multi-element high-lift configuration design optimization using viscous continuous adjoint method[J]. Journal of Aircraft, 2004, 41(5): 1082-1097. |
19 | AMINI Y, EMDAD H, FARID M. Adjoint shape optimization of airfoils with attached Gurney flap[J]. Aerospace Science and Technology, 2015, 41: 216-228. |
20 | 罗佳奇, 杨婧. 基于伴随方法的单级低速压气机气动设计优化[J]. 航空学报, 2020, 41(5): 623368. |
LUO J Q, YANG J. Aerodynamic design optimization of a single low-speed compressor stage by an adjoint method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623368 (in Chinese). | |
21 | LYU Z J, KENWAY G K, PAIGE C, et al. Automatic differentiation adjoint of the Reynolds-averaged navier-stokes equations with a turbulence model[C]∥21st AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2013: 2581 |
22 | SIGNOR D, YAMAUCHI G, SMITH C A, et al. Performance and loads data from an outdoor hover test of a Lynx tail rotor[R]. Washington D. C.: NASA, 1989 |
23 | 缪涛, 陈波, 马率, 等. 基于动态重叠网格方法的尾翼对螺旋桨滑流的影响[J]. 航空学报, 2019, 40(4): 622338. |
MIAO T, CHEN B, MA S, et al. Influence of tail wing on propeller slipstream based on dynamic overlapping grid method[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 622338 (in Chinese). | |
24 | 厉聪聪, 史勇杰, 徐国华, 马太行. 基于前缘下垂的提升旋翼悬停气动特性研究[J]. 南京航空航天大学学报(英文版), 2021, 38():10-16. |
LI C C, SHI Y J, XU G H. Research on aerodynamic characteristics of hovering rotor based on leading edge droop[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2021, 38(Sup 1): 10-16. | |
25 | OTHMER C, DE VILLIERS E, WELLER H. Implementation of a continuous adjoint for topology optimization of ducted flows[C]∥18th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2007: 3947. |
26 | VURUSKAN A, HOSDER S. Impact of turbulence models and shape parameterization on robust aerodynamic shape optimization[J]. Journal of Aircraft, 2019, 56(3): 1099-1115. |
27 | LI L, YUAN T Y, LI Y, et al. Multidisciplinary design optimization based on parameterized free-form deformation for single turbine[J]. AIAA Journal, 2019, 57(5): 2075-2087. |
28 | 辛宏, 高正. 直升机涡环状态速度边界的试验研究[J]. 南京航空航天大学学报, 1995, 27(4): 439-444. |
XIN H, GAO Z. An experimental investigation on the boundary of helicopter vortex-ring state[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 1995, 27(4): 439-444. (in Chinese) | |
29 | HAYMAN K J, REDDY K. Calculation of the velocity field generated by a helicopter main and tail rotors in hover[R]. Melbourne: Aeronautical Research Laboratories, 1984. |
30 | GHARIB M, RAMBOD E, SHARIFF K. A universal time scale for vortex ring formation[J]. Journal of Fluid Mechanics, 1998, 360: 121-140. |
[1] | TANG Songxiang, LI Jie, ZHANG Heng, NIU Xiaotian. Stall separation optimization and analysis of middle wing section on specially configured laminar flight [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526765-526765. |
[2] | GENG Yansheng, AI Mengqi, WANG Wei, GENG Jianzhong, ZHAO Yan. Efficient design and experimental verification of laminar airfoil [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526798-526798. |
[3] | TANG Songxiang, LI Jie, ZHANG Heng, NIU Xiaotian. Aerodynamic performance optimization design of middle wing section of a special laminar unmanned flight in high-speed cruise [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526766-526766. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341