[1] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228. [2] REN Y X, LIU M E, ZHANG H X. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2003, 192(2):365-386. [3] PENG J, ZHAI C L, NI G X, et al. An adaptive characteristic-wise reconstruction WENO-Z scheme for gas dynamic Euler equations[J]. Computers & Fluids, 2019, 179:34-51. [4] HE Z W, ZHANG Y S, LI X L, et al. Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities[J]. Journal of Computational Physics, 2015, 300:269-287. [5] BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6):3191-3211. [6] BROWNING G L, KREISS H O. Comparison of numerical methods for the calculation of two-dimensional turbulence[J]. Mathematics of Computation, 1989, 52(186): 369. [7] WEIRS V, CANDLER G, WEIRS V, et al. Optimization of weighted ENO schemes for DNS of compressible turbulence[C]//13th Computational Fluid Dynamics Conference. Reston: AIAA, 1997. [8] DUMBSER M, BOSCHERI W, SEMPLICE M, et al. Central weighted ENO schemes for hyperbolic conservation laws on fixed and moving unstructured meshes[J]. SIAM Journal on Scientific Computing, 2017, 39(6): A2564-A2591. [9] BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2):405-452. [10] QIU J X, SHU C W. On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes[J]. Journal of Computational Physics, 2002, 183(1):187-209. [11] PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3):530-545. [12] SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes[J]. Acta Numerica, 2020, 29:701-762. [13] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1):200-212. [14] HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207(2):542-567. [15] 刘巍,张理论,王勇献,等. 计算空气动力学并行编程基础[M].北京:国防工业出版社, 2013:13-19. LIU W, ZHANG L L, WANG Y X, et al. Foundations of computational aerodynamics parallel programming[M].Beijing: National Defense Industry Press, 2013: 13-19 (in Chinese). [16] PUPPO G. Adaptive application of characteristic projection for central schemes[M]//Hyperbolic Problems: Theory, Numerics, Applications. Berlin: Springer Berlin Heidelberg, 2003: 819-829. [17] 傅德薰,马延文,李新亮,等. 可压缩湍流直接数值模拟[M].北京:科学出版社,2010:64-67. FU D X, MA Y W, LI X L, et al. Direct numerical simulation of compressible turbulence[M].Beijing: Science Press, 2010: 64-67(in Chinese). [18] 水鸿寿. 一维流体力学差分方法[M].北京:国防工业出版社, 1998: 86-103. SHUI H S. One-dimensional hydrodynamic difference method[M].Beijing: National Defense Industry Press, 1998: 86-103 (in Chinese). [19] ANDERSON J D Jr. Hypersonic and high-temperature gas dynamics, third edition[M].Reston: AIAA, 2019. [20] DON W S, BORGES R. Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes[J]. Journal of Computational Physics, 2013, 250:347-372. |