[1] HEINECK J T, YAMAUCHI G K, WADCOCK A J, et al. Application of three-component PIV to a hovering rotor wake[C]// Proceedings of the 56th AHS Annual Forum. Fairfax Virginia: American Helicopter Society, 2000.
[2] MARTIN P B, LEISHMAN J G, PUGLIESE G J, et al. Stereoscopic PIV measurements in the wake of a hovering rotor[C]//Proceedings of the 56th AHS Annual Forum. Fairfax Virginia: American Helicopter Society, 2000.
[3] WONG O D, KOMERATH N M. Tip vortex formation and evolution to the near wake of a rotor in forward flight[C]//Proceedings of the 57th AHS Annual Forum. Fairfax Virginia: American Helicopter Society, 2001.
[4] RICHARD H, RAFFEL M. Rotor wake measurements: full-scale and model tests[C]//Proceedings of the 58th AHS Annual Forum. Fairfax Virginia: American Helicopter Society, 2002.
[5] RAMASAMY M, JOHNSON B, LEISHMAN J G. Turbulent tip vortex measurements using dual-plane digital particle image velocimetry[C]//Proceedings of the 64th AHS Annual Forum. Fairfax Virginia: American Helicopter Society, 2008.
[6] KINDLER K, MULLENERS K, RICHARD H, et al. A full-scale Particle Image Velocimetry investigation of "Young" rotor blade tip vortices[C]//Proceedings of the 65th AHS Annual Forum. Fairfax Virginia: American Helicopter Society, 2009.
[7] DURAISAMY K, RAMASAMY M, BAEDER J D, et al. High resolution computational and experimental study of hovering rotor tip vortex formation[J]. AIAA Journal, 2007, 45(11): 2593-2602.
[8] 印智昭, 招启军, 王博. 基于高阶WENO格式的旋翼非定常涡流场数值模拟[J]. 航空学报, 2016, 37(8): 2552-2564. YIN Z Z, ZHAO Q J, WANG B. Numerical simulations for the unsteady vortex flowfield of rotors based on high-order WENO scheme[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2552-2564 (in Chinese).
[9] 龚志斌, 李杰, 张恒. 翼尖开孔吹气流动控制数值模拟研究[J]. 航空计算技术, 2015, 45(4): 21-23. GONG Z B, LI J, ZHANG H. Numerical simulation of flow control over a fixed wing with slotted tip[J]. Aeronautical Computing Technique, 2015, 45(4): 21-23 (in Chinese).
[10] 叶舟, 徐国华, 史勇杰. 直升机旋翼/尾桨/垂尾气动干扰计算研究[J]. 航空学报, 2015, 36(9): 2874-2883. YE Z, XU G H, SHI Y J. Computational research on aerodynamic characteristics of helicopter main-rotor/tail-rotor/vertical-tail interaction[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2874-2883 (in Chinese).
[11] POMIN H, WAGNER S. Navier-Stokes analysis of helicopter rotor aerodynamics in hover and forward flight[J]. Journal of Aircraft, 2002, 39(5): 813-821.
[12] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[13] BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211.
[14] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order essentially non-oscillatory schemes[J]. Siam Journal on Numerical Analysis, 1987, 115(1): 200-212.
[15] BLAZEK J. Computational fluid dynamics: principles and applications[M]. 2nd ed. Oxford: Elsevier Ltd., 2007: 274-276.
[16] LUO H, BAUM J D, LOEHNER R. A fast, matrix-free implicit method for computing low Mach number flows on unstructured grids[J]. International Journal of Computational Fluid Dynamics, 2000, 14(2): 133-157.
[17] BALDWIN B, LOMAX H. Thin layer approximation and algebraic model for separated turbulent flows[C]//Proceedings of the AIAA 16th Aerospace Sciences Meeting. Reston: AIAA, 1978.
[18] CHIU I T, MEAKIN R L. On automating domain connectivity for overset grids: AIAA-1995-0854[R]. Reston: AIAA, 1995.
[19] THOMPSON J F, THAMES F C, MASTIN C W. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies[J]. Journal of Computational Physics, 1974, 15(3): 299-319.
[20] RENZONI P, D’ALASCIO A, KROLL N, et al. EROS-a common European Euler code for the analysis of the helicopter rotor flowfield[J]. Progress in Aerospace Science, 2000, 36(5): 437-485.
[21] CARADONNA F X, TUNG C. Experimental and analytical studies of a model helicopter rotor in hover: NASA-TM-81232[R]. Washington, D.C.: NASA, 1981.
[22] TANGLER J L. Experimental investigation of the subwing tip and its vortex structure: NASA-CR-3058[R]. Washington, D.C.: NASA, 1978. |