[1] CHEN X F, WANG S B, CHENG L, et al. Matching synchrosqueezing transform for aero-engine's signals with fast varying instantaneous frequency[J]. Journal of Mechanical Engineering, 2019, 55(13): 13-22(in Chinese). 陈雪峰, 王诗彬, 程礼. 航空发动机快变信号的匹配同步压缩变换研究[J]. 机械工程学报, 2019, 55(13): 13-22. [2] LIANG J, ZUO H F. Evaluation of maintenance cost for commercial aircraft[J]. Journal of Traffic and Transportation Engineering, 2002, 2(4): 95-98(in Chinese). 梁剑, 左洪福. 民用飞机维修成本评估[J]. 交通运输工程学报, 2002, 2(4): 95-98. [3] XIE Q H, LIANG J, ZHANG Q. The combination forecasting model of aero-engine maintenance cost based on statistic rough set theory[J]. Acta Armamentaril, 2006, 27(5): 857-861(in Chinese). 谢庆华, 梁剑, 张琦. 基于统计粗集的航空发动机维修成本组合预测模型[J]. 兵工学报, 2006, 27(5): 857-861. [4] SUN C, HE Z J, ZHANG Z S, et al. Operating reliability assessment for aero-engine based on condition monitoring information[J]. Journal of Mechanical Engineering, 2013, 49(6): 30-37(in Chinese). 孙闯, 何正嘉, 张周锁, 等. 基于状态信息的航空发动机运行可靠性评估[J]. 机械工程学报, 2013, 49(6): 30-37. [5] ZHANG H, DU Z H, FANG Z W, et al. Sparse decomposition based aero-engine's bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2015, 51(1): 97-105(in Chinese). 张晗, 杜朝辉, 方作为, 等. 基于稀疏分解理论的航空发动机轴承故障诊断[J]. 机械工程学报, 2015, 51(1): 97-105. [6] CHEN G. Feature extraction and intelligent diagnosis for ball bearing early faults[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 362-367(in Chinese). 陈果. 滚动轴承早期故障的特征提取与智能诊断[J]. 航空学报, 2009, 30(2): 362-367. [7] CHEN L S, ZHANG H, CHEN X F. Fault diagnosis of aero-engine bevel gear based on a low rank sparse model[J]. Journal of Vibration and Shock, 2020, 39(12): 103-112(in Chinese). 陈礼顺, 张晗, 陈雪峰. 基于低秩稀疏分解算法的航空锥齿轮故障诊断[J]. 振动与冲击, 2020, 39(12): 103-112. [8] WANG Z, ZHANG Q, XIONG J, et al. Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests[J]. IEEE Sensors Journal, 2017, 17(5): 5581-5588. [9] JIN X, ZHAO M, CHOW T W S, et al. Motor bearing fault diagnosis using trace ratio linear discriminant analysis[J]. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2441-2451. [10] WANG T C, WANG J Y, WU Y, et al. A fault diagnosis model based on weighted extension neural network for turbo-generator sets on samples with noise[J]. Chinese Journal of Aeronautics, 2020, 30(10): 2757-2769. [11] YUAN L, WANG S Y. A review on intelligent health management technology development of spacecraft control systems[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 525044(in Chinese). 袁利, 王淑一. 航天器控制系统智能健康管理技术发展综述[J]. 航空学报, 2021, 42(4): 525044. [12] LI H, XIAO D Y. Survey on data driven fault diagnosis methods[J]. Journal of Control and Decision, 2011, 26(1): 1-9, 16(in Chinese). 李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9, 16. [13] LEI Y G, JIA F, KONG D T, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104(in Chinese). 雷亚国, 贾锋, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104. [14] JIANG H K, SHAO H D, LI X Q, et al. Intelligent fault diagnosis method of aircraft based on deep learning[J]. Journal of Mechanical Engineering, 2019, 55(7): 27-34(in Chinese). 姜洪开, 邵海东, 李兴球, 等. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报, 2019, 55(7): 27-34. [15] DING B Q, WU J Y, SUN C, et al. Sparsity-Assis-ted Intelligent Condition Monitoring Method for Aero-engine Main Shaft Bearing[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(4): 508-516. [16] SHAO H D, ZHANG X Y, CHENG J S, et al. Intelligent fault diagnosis of bearing using enhanced deep transfer auto-encoder[J]. Journal of Mechanical Engineering, 2020, 56(9): 84-90(in Chinese). 邵海东, 张笑阳, 程军圣, 等. 基于提升深度迁移自编码器的轴承故障诊断[J]. 机械工程学报, 2020, 56(9): 84-90. [17] HOU W Q, Y M, LI W H. Rolling element bearing fault classification using improved stacked de-noising auto-encoders[J]. Journal of Mechanical Engineering, 2018, 54(7): 87-96(in Chinese). 侯文擎, 叶鸣, 李巍华. 基于改进堆叠降噪自编码器的滚动轴承故障分类[J]. 机械工程学报, 2018, 54(7): 87-96. [18] CHI Y W, YANG S X, JIAO W D. A Multi-label fault classification method for rolling bearing based on LSTM-RNN[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(3): 563-571, 629(in Chinese). 池永为, 杨世锡, 焦卫东. 基于LSTM-RNN的滚动轴承故障多标签分类方法[J]. 振动. 测试与诊断, 2020, 40(3): 563-571, 629. [19] ZHANG J Q, SUN Y, GUO L, et al. A new bearing fault diagnosis method based on modified convolutional neural networks[J]. Chinese Journal of Aeronautics, 2020, 33(2): 439-447. [20] CHEN R X, YANG X, HU X L, et al. Planetary gearbox fault diagnosis method based on deep belief network transfer learning[J]. Journal of Vibration and Shock, 2021, 40(1): 127-133, 150(in Chinese). 陈仁祥, 杨星, 胡小林, 等. 深度置信网络迁移学习的行星齿轮箱故障诊断方法[J]. 振动与冲击, 2021, 40(1): 127-133, 150. [21] HU N Q, CHEN H P, CHENG Z, et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J]. Journal of Mechanical Engineering, 2019, 55(7): 9-17(in Chinese). 胡茑庆, 陈徽鹏, 程哲, 等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报, 2019, 55(7): 9-17. [22] TANG B P, XIONG X Y, ZHAO M H, et al. A Multi-resonance component fusion based convolutional neural network for fault diagnosis of planetary gearboxes[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(3): 507-512, 625(in Chinese). 汤宝平, 熊学嫣, 赵明航, 等. 多共振分类融合CNN的行星齿轮箱故障诊断[J]. 振动、测试与诊断, 2020, 40(3): 507-512, 625. [23] WEI X L, CHAO Q, TAO J F, et al. Cavitation fault diagnosis method for high-speed plunger pumps based on LSTM and CNN[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 423876(in Chinese). 魏晓良, 潮群, 陶建峰, 等. 基于LSTM和CNN的高速柱塞泵故障诊断[J]. 航空学报, 2021, 42(3): 423876. [24] ZHANG M D, LU J H, MA J H. Fault diagnosis of rolling bearing based on multi-scale convolution strategy CNN[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(6): 102-110(in Chinese). 张明德, 卢建华, 马婧华. 基于多尺度卷积策略CNN得滚动轴承故障诊断[J]. 重庆理工大学学报(自然科学), 2020, 34(6): 102-110. [25] PENG P, KE L L, WANG J G. Fault diagnosis of RV reducer with noise interference[J]. Journal of Mechanical Engineering, 2020, 56(1): 30-36(in Chinese). 彭鹏, 柯梁亮, 汪久根. 噪声干扰下的RV减速器故障诊断[J]. 机械工程学报, 2020, 56(1): 30-36. [26] SHEN C Q, WANG X, WANG D, et al. Multi-scale convolution intra-class transfer learning for train bearing fault diagnosis[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 151-164(in Chinese). 沈长青, 王旭, 王东, 等. 基于多尺度卷积类迁移学习的列车轴承故障诊断[J]. 交通与运输工程学报, 2020, 20(5): 151-164. [27] MATEUSZ B, ATSUTO M, MACIEJ A, et al. A systematic study of the class imbalance problem in convolutional neural networks[J]. Neural Networks, 2018, 106: 249-259. [28] GUO Q, LI Y, SONG Y, et al. Intelligent fault diagnosis method based on full 1-D convolutional generative adversarial network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 2044-2053. [29] HUANG N, CHEN Q, CAI G, et al. Fault diagnosis of bearing in wind turbine gearbox under actual operating conditions driven by limited data with noise labels[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70(1): 1-10. [30] MATHEW J, PANG C K, LUO M, et al. Classification of imbalanced data by oversampling in kernel space of support vector machines[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(9): 4065-4076. [31] HUANG H S, WEI J A, REN Z P, et al. Rolling bearing fault diagnosis based on imbalanced sample characteristics oversampling algorithm and SVM[J]. Journal of Vibration and Shock, 2020, 39(10): 65-74, 132(in Chinese). 黄海松, 魏建安, 任竹鹏, 等. 基于失衡样本特性过采样算法与SVM的滚动轴承故障诊断[J]. 振动与冲击, 2020, 39(10): 65-74, 132. [32] TAO X M, LIU F R, DONG Z J, et al. Novel fault detection method based on SVM with unbalanced datasets[J]. Journal of Vibration and Shock, 2010, 29(12): 8-12, 29(in Chinese). 陶新民, 刘福荣, 董智靖, 等. 不均衡数据下基于SVM的故障检测新算法[J]. 振动与冲击, 2010, 29(12): 8-12, 29. [33] LU L, SHIN Y, SHU Y, et al. Dying ReLU and initialization: Theory and numerical examples[EB/OL]. (2020-10-26)[2021-2-26]. http://export.arxiv.org/abs/1903.06733. [34] RAMACHANDRAN P, ZOPH B, QUOC V L. Searching for activation functions[EB/OL]. (2017-10-27)[2021-2-26]. https://arxiv.org/abs/1710.05941. [35] ARROA V, MAHLA S K, LEEKHA R S, et al. Intervention of artificial neural network with an improved activation function to predict the performance and emission characteristics of a biogas powered dual fuel engine[J]. Electronics, 2021, 10(5): 584. [36] DAGA A P, FASANA A, MARCHESIELLO S, et al. The Politecnico di Torino rolling bearing test rig: Description and analysis of open access data[J]. Mechanical Systems and Signal Processing, 2019, 120: 252-273. |