[1] PADHY G K, WU C S, GAO S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications:A review[J].Journal of Materials Science & Technology, 2018, 34(1):1-38. [2] MISHRA R S, MA Z Y. Friction stir welding and processing[J].Materials Science and Engineering:Reports, 2005, 50(1-2):1-78. [3] 黄永宪, 陈磊, 谢聿铭, 等. 搅拌摩擦焊缝缺陷固相修复技术研究进展[J].辽宁石油化工大学学报, 2019, 39(2):88-93. HUANG Y X, CHEN L, XIE Y M, et al. Research progress of solid phase repair technology for friction stir weld defects[J].Journal of Liaoning Shihua University, 2019, 39(2):88-93(in Chinese). [4] 周利, 周炜璐, 张嘉伦, 等. 搅拌摩擦焊匙孔修复技术研究现状[J].航空制造技术, 2016, 59(14):75-79, 92. ZHOU L, ZHOU W L, ZHANG J L, et al. Research status of exit hole repairing technology for friction stir welding[J].Aeronautical Manufacturing Technology, 2016, 59(14):75-79, 92(in Chinese). [5] BUCHIBABU V, REDDY G M, DE A. Probing torque, traverse force and tool durability in friction stir welding of aluminum alloys[J].Journal of Materials Processing Technology, 2017, 241:86-92. [6] ARORA A, MEHTA M, DE A, et al. Load bearing capacity of tool pin during friction stir welding[J].The International Journal of Advanced Manufacturing Technology, 2012, 61(9):911-920. [7] 魏诗萌, 孙杨, 王福山, 等. 搅拌摩擦焊搅拌头疲劳寿命的模拟研究[J].焊接技术, 2019, 48(4):5-9, 113. WEI S M, SUN Y, WANG F S, et al. Simulation study on fatigue life of friction stir welding tools[J].Welding Technology, 2019, 48(4):5-9, 113(in Chinese). [8] SIDDIQUEE A N, PANDEY S. Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel[J].The International Journal of Advanced Manufacturing Technology, 2014, 73(1-4):479-486. [9] WANG J Y, SU J Q, MISHRA R S, et al. Tool wear mechanisms in friction stir welding of Ti-6Al-4V alloy[J].Wear, 2014, 321:25-32. [10] WU L H, WANG D, XIAO B L, et al. Tool wear and its effect on microstructure and properties of friction stir processed Ti-6Al-4V[J].Materials Chemistry and Physics, 2014, 146(3):512-522. [11] SONG K H, NAKATA K. Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding[J].Materials & Design, 2010, 31(6):2942-2947. [12] RAI R, DE A, BHADESHIA H K D H, et al. Review:Friction stir welding tools[J].Science and Technology of Welding and Joining, 2011, 16(4):325-342. [13] LIU X C, ZHEN Y Q, SHEN Z K, et al. A modified friction stir welding process based on vortex material flow[J].Chinese Journal of Mechanical Engineering, 2020, 33(1):90. [14] 刘小超, 甄云乾, 王啸, 等. 一种用于摩擦焊的旋转焊具及焊接方法:CN110524105A[P]. 2019-12-03. LIU X C, ZHEN Y Q, WANG X, et al. Rotary welding tool for friction welding and welding method:CN110524105A[P]. 2019-12-03(in Chinese). [15] YU H Z, MISHRA R S. Additive friction stir deposition:A deformation processing route to metal additive manufacturing[J].Materials Research Letters, 2021, 9(2):71-83. [16] LI W Y, LI J F, ZHANG Z H, et al. Pinless friction stir welding of AA2024-T3 joint and its failure modes[J].Transactions of Tianjin University, 2014, 20(6):439-443. [17] 栾国红, 李光, 王卫兵, 等. 塑流摩擦焊技术[J].焊接学报, 2010, 31(8):1-4, 8, 113. LUAN G H, LI G, WANG W B, et al. Fundamental technology of friction flow welding[J].Transactions of the China Welding Institution, 2010, 31(8):1-4, 8, 113(in Chinese). [18] 周平, 戴启雷, 张元杰. S线微观形貌对搅拌摩擦焊接头力学性能的影响[J].热加工工艺, 2019, 48(21):49-52, 57. ZHOU P, DAI Q L, ZHANG Y J. Effect of S curve micro-morphology on mechanical properties of friction stir welded joint[J].Hot Working Technology, 2019, 48(21):49-52, 57(in Chinese). [19] 张航, 宫文彪, 赵立哲, 等. 6082-T6铝合金搅拌摩擦焊"S"线的形成及其对接头组织性能的影响[J].热加工工艺, 2020, 49(23):23-26. ZHANG H, GONG W B, ZHAO L Z, et al. Formation of "S" line and its influences on microstructure and properties of friction stir welded 6082-T6 aluminum alloy[J].Hot Working Technology, 2020, 49(23):23-26(in Chinese). [20] 戴明亮, 胡志力, 万心勇, 等. S线对搅拌摩擦焊热处理接头力学性能的影响[J].金属热处理, 2017, 42(7):46-50. DAI M L, HU Z L, WAN X Y, et al. Effect of zigzag line on mechanical properties of joint after friction stir welding and heat treatment[J].Heat Treatment of Metals, 2017, 42(7):46-50(in Chinese). [21] SATO Y S, KOKAWA H, ENOMOTO M, et al. Microstructural evolution of 6063 aluminum during friction-stir welding[J].Metallurgical and Materials Transactions A, 1999, 30(9):2429-2437. [22] LIU F C, MA Z Y. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy[J].Metallurgical and Materials Transactions A, 2008, 39(10):2378-2388. [23] LIU H J, HOU J C, GUO H. Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy[J].Materials & Design, 2013, 50:872-878. [24] RAJAKUMAR S, MURALIDHARAN C, BALASUBRAMANIAN V. Establishing empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints[J].Transactions of Nonferrous Metals Society of China, 2010, 20(10):1863-1872. [25] LIU F J, FU L, CHEN H Y. Effect of high rotational speed on temperature distribution, microstructure evolution, and mechanical properties of friction stir welded 6061-T6 thin plate joints[J].The International Journal of Advanced Manufacturing Technology, 2018, 96(5):1823-1833. [26] LI D X, YANG X Q, CUI L, et al. Effect of welding parameters on microstructure and mechanical properties of AA6061-T6 butt welded joints by stationary shoulder friction stir welding[J].Materials & Design, 2014, 64:251-260. [27] ZHOU L, ZHANG R X, HU X Y, et al. Effects of rotation speed of assisted shoulder on microstructure and mechanical properties of 6061-T6 aluminum alloy by dual-rotation friction stir welding[J].The International Journal of Advanced Manufacturing Technology, 2019, 100(1-4):199-208. [28] ZHOU N, SONG D F, QI W J, et al. Influence of the kissing bond on the mechanical properties and fracture behaviour of AA5083-H112 friction stir welds[J].Materials Science and Engineering:A, 2018, 719:12-20. [29] KADLEC M, R AŮŽEK R, NOVÁKOVÁ L. Mechanical behaviour of AA 7475 friction stir welds with the kissing bond defect[J].International Journal of Fatigue, 2015, 74:7-19. [30] 毛育青, 江周明, 刘奋成, 等. 7075-T6铝合金厚板FSW焊缝沿厚度方向上的显微组织演变规律[J].航空学报, 2019, 40(5):422640. MAO Y Q, JIANG Z M, LIU F C, et al. Microstructure evolution rule along weld thickness direction of FSW 7075-T6 aluminum alloy thick plate[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(5):422640(in Chinese). |