[1] 路勇, 刘晓光, 周宇, 等. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39(1):021302. LU Y, LIU X G, ZHOU Y, et al. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronaustica et Astronautica Sinica, 2018, 39(1):021302(in Chinese). [2] 张福海, 付宜利, 王树国. 惯性参数不确定的自由漂浮空间机器人自适应控制研究[J]. 航空学报, 2012, 33(12):2347-2354. ZHANG F H,FU Y L,WAGN S G. Adaptive control of free-floating space robot with inertia parameter uncertainties[J]. Acta Aeronaustica et Astronautica Sinica, 2012, 33(12):2347-2354(in Chinese). [3] FLORES A A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26. [4] 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4):805-811. CUI N G, WANG P, GUO J F, et al. A review of on-orbit servicing[J]. Journal of Astronautics, 2007, 28(4):805-811(in Chinese). [5] MAKITA S, WAN W. A survey of robotic caging and its applications[J]. Advanced Robotics, 2017, 31(19-20):1071-1085. [6] 魏承, 赵阳, 田浩. 空间机器人捕获漂浮目标的抓取控制[J]. 航空学报, 2010, 31(3):632-637. WEI C, ZHAO Y, TIAN H. Grasping control of space robot for capturing floating target[J].Acta Aeronauticaet et Astronautica Sinica, 2010, 31(3):632-637(in Chinese). [7] 徐文福, 孟得山, 徐超, 等. 自由漂浮空间机器人捕获目标的协调控制[J]. 机器人, 2013, 35(5):559-567. XU W F, MENG D S, XU C, et al. Coordinated control of a free-floating space robot for capturing a target[J]. Robot, 2013, 35(5):559-567(in Chinese). [8] 孙冲, 袁建平, 万文娅, 等. 自由翻滚故障卫星外包络抓捕及抓捕路径优化[J]. 航空学报, 2018, 39(11):322192. SUN C, YUAN J P, WAN W Y, et al. Outside envelope grasping method and approaching trajectory optimization for tumbling malfunction satellite capture s[J]. Acta Aeronaustica et Astronautica Sinica, 2018, 39(11):322192(in Chinese). [9] 韩亮亮, 杨健, 赵颖, 等. 基于仿章鱼软体机器人空间碎片柔性自适应捕获装置的设想[J]. 载人航天, 2017, 23(4):469-472. HAN L L, YANG J, ZHAO Y, et al. Assumption on flexible adaptive orbital debris capture device based on octopus-inspired pneumatic soft robot[J]. Manned Space Flight, 2017, 23(4):469-472(in Chinese). [10] KUPERBERG W. Problems on polytopes and convex sets[C]//Proceedings of DIMACS:Workshop on Polytopes, 1990:584-589. [11] RIMON E, BLAKE A. Caging planar bodies by one-parameter two-fingered gripping systems[J]. International Journal of Robotics Research, 1999, 18(3):299-318. [12] VAHEDI M,STAPPEN F V D. Caging plygons with two and three fingers[J]. International Journal of Robotics Research, 2008, 47(27):1308-1324. [13] PIPATTANASOMPORN P, SUDSANG A. Two-finger caging of concave polygon[C]//International Conference on Robotics and Automation, 2006:2137-2142. [14] PONCE J, BURDICK J, RIMON E. Computing the immobilizing three-finger grasps of planar objects[C]//Computational Kinematics'95, 1995:291-300. [15] DAVIDSON C, BLAKE A. Caging planar objects with a three-finger one-parameter gripper[C]//International Conference on Robotics and Automation, 1998:2722-2727. [16] PIPATTANASOMPORN P, SUDSANG A. Two-finger caging of nonconvex polytopes[J]. IEEE Transactions on Robotics, 2011, 27(2):324-333. [17] WANG Z D, HIRATA Y, KOSUGE K. Dynamic object closure by multiple mobile robots and random caging formation testing[C]//International Conference on Intelligent Robots and Systems, 2006:3675-3681. [18] WANG Z D, MATSUMOTO H, HIRATA Y, et al. A path planning method for dynamic object closure by using random caging formation testing[C]//International Conference on Intelligent Robots and Systems, 2009:5923-5929. [19] WAN W, SHI B, WANG Z, et al. Multirobot object transport via robust caging[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 99:1-11. [20] 周浦城, 洪炳镕, 王月海. 动态环境下多机器人合作追捕研究[J]. 机器人, 2005, 27(4):289-295. ZHOU P S, HONG B R, WANG Y H. Multi-robot cooperative pursuit under dynamic environment[J]. Robot, 2005, 27(4):289-295(in Chinese). [21] 付光远, 李源. 多移动机器人动态联盟围捕策略[J]. 计算机应用, 2019, 39(S1):1-7. FU G Y, LI Y. Dynamic alliance pursuit strategy for multiple mobile robots[J]. Journal of Computer Applications, 2019, 39(S1):1-7(in Chinese). [22] 孙俊, 张世杰, 马也, 等. 空间非合作目标惯性参数的Adaline网络辨识方法[J]. 航空学报, 2016, 37(9):2799-2808. SUN J, ZHANG S J, MA Y, et al. Adaline network-based identification method of inertial parametes for space uncooperative targets[J]. Acta Aeronaustica et Astronautica Sinica, 2016, 37(9):2799-2808(in Chinese). [23] LI Q, YUAN J, SUN C. Robust fault-tolerant saturated control for spacecraft proximity operations with actuator saturation and faults[J]. Advances in Space Research, 2019, 63:1541-1553. [24] BHAT S, BERNSTEIN D S. Finite-time stability of homogeneous systems[C]//American Control Conference,1997:2513-2514 [25] LIN B, SU J. One way distance:For shape based similarity search of moving object trajectories[J]. Geoinformatica, 2008, 12(2):117-142. |