[1] HIDAKA T, TERAUCHI Y. Dynamic behavior of planetary gear (1st report load distribution in planetary gear)[J]. Bulletin of the JSME, 1976, 19(132):690-698.
[2] HIDAKA T, TERAUCHI Y, DOHI K. On the relation between the run out errors and the motion of the center of sun gear in a stoeckicht planetary gear[J]. Bulletin of the JSME, 1979, 22(167):748-754.
[3] HIDAKA T, TERAUCHI Y, NAGAMURA K. Dynamic behavior of planetary gear (7th report influence of the thickness of ring gear)[J]. Bulletin of the JSME, 1979, 22(170):1142-1149.
[4] MULLER H W. Epicyclic drive trains[D]. Detroit:Wayne State University, 1982.
[5] SEAGER D L. Load sharing among planet gears:700178[R]. SAE, 1970.
[6] KASUBA R, AUGUST R. Torsional vibrations and dynamic loads in a basic planetary gear system[J]. Journal of Vibration and Acoustics, 1986, 108(3):348-353.
[7] MA P, BOTMAN M. Load sharing in a planetary gear stage in the presence of gear errors and misalignments[J]. Journal of Mechanisms, Transmissions, and Automation in Design, 1985, 107:1-7.
[8] JARCHOW F. Development status of epicyclic gears[C]//ASME International Power Transmission and Gearing Conference. New York:ASME, 1989:48-53.
[9] HAYASHI T, LI Y, HAYASHI I. Measurement and some discussions on dynamic load sharing in planetary gears[J]. Bulletin of the JSME, 1986, 29(253):2290-2297.
[10] KAHRAMAN A. Load sharing characteristics of planetary transmissions[J]. Mechanism and Machine Theory, 1994, 29(8):1151-1165.
[11] KAHRAMAN A. Static load sharing characteristics of transmission planetary gear sets:Model and experiment:1999-01-1050[R]. SAE, 1999.
[12] YANG Q. Fatigue test and reliability design of gears[J]. International Journal of Fatigue, 1996, 18(3):171-177.
[13] ZHANG Y M, LIU Q, WEN B. Practical reliability-based design of gear pairs[J]. Mechanism and Machine Theory, 2003, 38:1363-1370.
[14] ZHANG G Y, WANG G Q, LI X F. Global optimization of reliability design for large ball mill gear transmission based on the kriging model and genetic algorithm[J]. Mechanism and Machine Theory, 2013, 69(11):321-336.
[15] NEJAD A R, GAO Z, MOAN T. On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drive trains[J]. International Journal of Fatigue, 2014, 61:116-128.
[16] LI Y F, VALLA S, ZIO E. Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation[J]. Renewable Energy, 2015, 83:222-233.
[17] GUERINE A, ELHAMI A, WALHA L. A perturbation approach for the dynamic analysis of one stage gear system with uncertain parameters[J]. Mechanism and Machine Theory, 2015, 92:113-126.
[18] HASL C, LIU H, OSTER P. Method for calculating the tooth root stress of plastic spur gears meshing with steel gears under consideration of deflection-induced load sharing[J]. Mechanism and Machine Theory, 2017, 111:152-163.
[19] CONCLI F, GORLA C. Numerical modeling of the power losses in geared transmissions:Windage, churning and cavitation simulations with a new integrated approach that drastically reduces the computational effort[J]. Tribology International, 2016, 103:58-68.
[20] WANG L M, SHAO Y M. Fault mode analysis and detection for gear tooth crack during its propagating process based on dynamic simulation method[J]. Engineering Failure Analysis, 2017, 71:166-178.
[21] GLODEZ S, ABERSEK B. A computational model for determination of service life of gears[J]. International Journal of Fatigue, 2002, 24(10):1013-1020.
[22] GLODEZ S, ABERSEK B. Evaluation of the service life of gears in regard to surface pitting[J]. Engineering Fracture Mechanics, 2004, 71(4):429-438.
[23] ABERSEK B, FLASKER J. Review of mathematical and experimental models for determination of service life of gears[J]. Engineering Fracture Mechanics, 2004, 71(4):439-453.
[24] BRITISH STANDARD. ISO 6336-3 Calculation of load capacity of spur and helical gears, part 3:Calculation of tooth bending strength[S]. 2006.
[25] BUCH A. Fatigue strength calculation[M]. 1988:169-170.
[26] AKATA E, ALTINBALIK M T, CAN Y. Three point load application in single tooth bending fatigue test for evaluation of gear blank manufacturing methods[J]. International Journal of Fatigue, 2004, 26(7):785-789.
[27] SAVARIA V, BRIDIER F, BOCHER P. Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears[J]. International Journal of Fatigue, 2016, 85:70-84.
[28] DENGO C. Experimental analysis of bending fatigue strength of plain and notched case-hardened gear steels[J]. International Journal of Fatigue, 2015, 80:145-161.
[29] CONRADO E, GORLA C, DAVOLI P. A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications[J]. Engineering Failure Analysis, 2017, 78(8):41-54.
[30] 安宗文, 张宇, 刘波. 风电齿轮箱零件寿命分布函数的确定方法[J]. 电子科技大学学报, 2014, 43(6):950-954. AN Z W, ZHANG Y, LIU B. A method to determine the life distribution function of components for wind turbine gearbox[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(6):950-954(in Chinese).
[31] OLSSON E, OLANDER A, OBERG M. Fatigue of gears in the finite life regime-experiments and probabilistic modelling[J]. Engineering Failure Analysis, 2016, 62(1):276-286.
[32] FERNANDES P. Tooth bending fatigue failures in gears[J]. Engineering Failure Analysis, 1996, 3(3):219-225.
[33] MACKALDENER M, OLSSON M. Interior fatigue fracture of gear teeth[J]. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23(4):283-292.
[34] MACKALDENER M, OLSSON M. Tooth interior fatigue fracture-computational and material aspects[J]. International Journal of Fatigue, 2001, 23(4):329-340.
[35] 林左鸣. 世界航空发动机手册[M]. 北京:航空工业出版社, 2012:240-270. LIN Z M. World aero engine manual[M]. Beijing:Aviation Industry Press, 2012:240-270(in Chinese). |