[1] HOUARI M S A, TOUNSI A, BÉG O A. Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory[J]. International Journal of Mechanical Sciences, 2013, 76:102-111.
[2] PRAVEEN G N, REDDY J N. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates[J]. International Journal of Solids and Structures, 1998, 35(33):4457-4476.
[3] WU L H. Thermal buckling of a simply supported moderately thick rectangular FGM plate[J]. Composite Structures, 2004, 64(2):211-218.
[4] MENDONCA P D T R, DE BARCELLOS C S D, TORRES D A F. Robust Ck/C0 generalized FEM approximations for higher-order conformity requirements:Application to Reddy's HSDT model for anisotropic laminated plates[J]. Composite Structures, 2013, 96:332-345.
[5] JONNALAGADDA K D, TAUCHERT T R, BLANDFORD G E. High-order thermoelastic composite plate theories-An analytic comparison[J]. Journal of Thermal Stresses, 1993, 16(3):265-284.
[6] ROHWER K, ROLFES R, SPARR H. Higher-order theories for thermal stresses in layered plates[J]. International Journal of Solids and Structures, 2001, 38(21):3673-3687.
[7] RADU A G, CHAYTTOPADHYAY A. Dynamic stability analysis of composite plates including delaminations using a higher order theory and transformation matrix approach[J]. International Journal of Solids and Structures, 2002, 39(7):1949-1965.
[8] TOURATIER M. An efficient standard plate theory[J]. International Journal of Engineering Science, 1991, 29(8):901-916.
[9] ZENKOUR A M, ALGHAMDI N A. Thermoelastic bending analysis of functionally graded sandwich plates[J]. Journal of Materials Science, 2008, 43(8):2574-2589.
[10] MATSUNAGA H. Stress analysis of functionally graded plates subjected to thermal and mechanical loadings[J]. Composite Structures, 2009, 87(4):344-357.
[11] REDDY J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4):745-752.
[12] REDDY J N. Analysis of functionally graded plates[J]. International Journal for Numerical Methods in Engineering, 2000, 47(1-3):663-684.
[13] REDDY J N. A refined nonlinear theory of plates with transverse shear deformation[J]. International Journal of Solids and Structures, 1984, 20(9-10):881-896.
[14] YANG J, SHEN H S. Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions[J]. Composites Part B:Engineering, 2003, 34(2):103-115.
[15] DUC N D, TUNG H V. Mechanical and thermal postbuckling of higher order shear deformable functionally graded plates on elastic foundations[J]. Composite Structures, 2011, 93(11):2874-2881.
[16] SZEKRENYES A. Application of Reddy's third-order theory to delaminated orthotropic composite plates[J]. European Journal of Mechanics-A/Solids, 2014, 43:9-24.
[17] JIN G Y, YANG C M, LIU Z G. Vibration and damping analysis of sandwich viscoelastic-core beam using Reddy's higher-order theory[J]. Composite Structures, 2016, 140:390-409.
[18] CHEN W J, WU Z. A Selective review on recent development of displacement-based laminated plate theories[J]. Recent Patents on Mechanical Engineering, 2008, 100(1):29-44.
[19] WU Z, LO S H, SZE K Y. Influence of transverse normal strain and temperature profile on thermoelasticity of sandwiches in terms of the enhanced Reddy's theory[J]. Journal of Thermal Stresses, 2013, 36(1):19-36.
[20] KAPURIA S, DUMIR P C, AHMED A. An efficient higher order zigzag theory for composite and sandwich beams subjected to thermal loading[J]. International Journal of Solids and Structures, 2003, 40(24):6613-6631.
[21] MATSUNAGA H. Interlaminar stress analysis of laminated composite and sandwich circular arches subjected to thermal/mechanical loading[J]. Composite Structures, 2003, 60(3):345-358. |