[1] HARTEN A, OSHER S. Uniformly high order aceurate essentially non-oseillatory sehemes[J]. SIAM Journal on Numerical Analysis, 1987, 24:279-309.
[2] JIANG G, SHU C. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228.
[3] 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 66:143-165. ZHANG H X. Non-fluction, non-free parameter dissipation difference schemes[J]. Acta Aerodynamica Sinica, 1988, 66:143-165(in Chinese).
[4] LELE S K. Compact finite-difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1):16-24.
[5] 张涵信, 庄逢甘. 关于建立高阶精度差分格式的问题[J].空气动力学学报, 1998, 16(1):14-23. ZHANG H X, ZHUANG F G. On the construction of high order accuracy difference schemes[J]. Acta Aerodynamica Sinica,1998, 16(1):14-23(in Chinese).
[6] 傅德薰, 马延文. 高精度差分格式及多尺度流场特性的数值模拟[J]. 空气动力学学报, 1998, 16(1):24-35. FU D X, MA Y W. High order accurate schemes and numerical simulation of multi scale structures in complex flow fields[J]. Acta Aerodynamica Sinica, 1998, 16(1):24-35(in Chinese).
[7] 沈孟育, 蒋莉. 满足熵增原则的高精度高分辨率格式[J]. 清华大学学报(自然科学版), 1999, 39(4):1-5. SHEN M Y, JIANG L. High order accuracy and high resolution schemes satisfying principle of entropy increment[J]. Journal of Tsinghua University (Science and Technology), 1999, 39(4):1-5(in Chinese).
[8] 邓小刚, 刘昕, 毛枚良, 等. 高精度加权紧致非线性格式的研究进展[J]. 力学进展, 2007, 37(3):417-427. DENG X G, LIU X, MAO M L, et al. Advances in high-order accurate weighted compact nonlinear schemes[J]. Advances in Mechanics, 2007, 37(3):417-427(in Chinese).
[9] COLONIUS T, LELE S K. Computational aeroacoustics:Progress on nonlinear problems of sound generation[J]. Progress in Aerospace Sciences, 2004, 40(6):345-416.
[10] VISBAL M R, GAITONDE D V. Higher-order finite-difference schemes on curvilinear and deforming grides[J]. Journal of Computational Physics, 2002, 181(1):155-185.
[11] RIZZETTA D P, VISBAL M R, BLAISDELL G A. A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation[J]. International Journal for Numerical Methods in Fluids, 2003, 42(6):665-693.
[12] LAUNDER B E, SPALDING D B. Lectures in mathematical models of turbulence[M]. London:Academic Press, 1972.
[13] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston:AIAA, 1992.
[14] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[15] VENKATAKRISHNAN V. Perspective on unstructured grid flow solvers[J]. AIAA Journal, 1996, 34(3):533-547.
[16] 张来平, 张涵信. NND格式在非结构网格中的推广[J]. 力学学报, 1996, 28(2):135-142. ZHANG L P, ZHANG H X. Development of NND scheme on unstructured grids[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(2):135-142(in Chinese).
[17] 叶正寅, 杨永年, 钟诚文. 非结构网格生成技术方法研究[J]. 航空计算技术, 1998, 28(1):44-47. YE Z Y, YANG Y N, ZHONG C W. The method investigation in unstructured grid generation technique[J]. Aeronautical Computer Technique, 1998, 28(1):44-47(in Chinese).
[18] KALLINDERIS Y, KHAWAJA A, MCMORRIS H. Hybrid prismatic/tetrahedral grid generation for viscous flows around complex geometries[J]. AIAA Journal, 1996, 34(2):291-298.
[19] 张来平, 张涵信, 高树椿. 矩形/非结构混合网格技术及在二维/三维复杂无粘流场数值模拟中的应用[J]. 空气动力学学报, 1998, 16(1):79-88. ZHANG L P, ZHANG H X, GAO S C. A cartesian/unstructured hybrid grid solver and its applications to 2D/3D complex inviscid flow fields[J]. Acta Aerodynamica Sinica, 1998, 16(1):79-88(in Chinese).
[20] DUBUC L, CANTARITI F, WOODGATE M, et al. A grid deformation technique for unsteady flow computations[J]. International Journal for Numerical Methods in Fluids, 2000, 32(3):285-311.
[21] LI J, LIU Z, HUANG S. Deforming grid technique applied to unsteady viscous flow simulation by a fully implicit solver[J]. Journal of Aircraft, 2005, 42(5):1371-1374.
[22] BENEK J A, BUNING P G, STEGER J L. A 3-D chimera grid embedding technique:AIAA-1985-1523[R]. Reston:AIAA, 1985.
[23] 朱自强, 李津, 张正科, 等. 计算流体力学中的网格生成方法及其应用[J]. 航空学报, 1998, 19(2):152-158. ZHU Z Q, LI J, ZHANG Z K, et al. Grid generation method in cfd and its application[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(2):152-158(in Chinese).
[24] KU D N. Blood flow in arteries[J]. Annual Review of Fluid Mechanics, 1997, 29:399-434.
[25] PERI D, ROSSETTI M, CAMPANA E F. Design optimiation of ship hulls via CFD techniques[J]. Jounal of Ship Research, 2001, 45(2):141-149.
[26] TAHARA Y, TOHYAMA S. CFD-based multi-objectiove optimization method for ship design[J]. Internatonal Journal Fornumerical Methods in Fluids, 2006, 52:499-527.
[27] BOERNER J, BOYD I D. Numerical simulation of probe measurements in a nonequilibrium plasma, using a detailed model electron fluid:AIAA-2007-0995[R]. Reston:AIAA, 2007.
[28] SNEL H. Review of aerodynamics for wind turbines[J]. Wind Energy, 2003, 6(3):203-211.
[29] SOBIESZCZANSKI-SOBIESKI J. Sensitivity analysis and multidisciplinary optimization for aircraft design:Recent advances and results[J]. Journal of Aircraft, 1990, 27(12):993-1001.
[30] 余雄庆, 丁运亮. 多学科设计优化算法及其在飞行器设计中应用[J]. 航空学报, 2000, 21(1):1-6. YU X Q, DING Y L. Multidisciplinary design optimization a survey of its algorithms and applications to aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1):1-6(in Chinese).
[31] 夏露, 高正红, 李天. 飞行器外形多目标多学科综合优化设计方法研究[J]. 空气动力学学报, 2003, 21(3):275-281. XIA L, GAO Z H, LI T. Investigation of integrated multi-disciplinary and multi-objective optimization of the aircraft configuration design method[J]. Acta Aerodynamica Sinica, 2003, 21(3):275-281(in Chinese).
[32] 何麟书, 王书河, 张玉珠. 飞行器多学科综合设计新算法[J]. 航空学报, 2004, 25(5):465-469(in Chinese). HE L S, WANG S H, ZHANG Y Z. The new algorithm for aircraft multidisciplinary integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5):465-469(in Chinese).
[33] 苏伟, 高正红, 夏露. 隐身性能约束的多目标气动外形优化设计[J]. 空气动力学学报, 2006, 24(1):137-140. SU W, GAO Z H, XIA L. Multiobjective optimization design of aerodynamic configuration constrained by stealth performance[J]. Acta Aerodynamica Sinica, 2006, 24(1):137-140(in Chinese).
[34] 唐伟, 桂业伟, 王安龄. 飞行器热气动布局优化设计研究[J]. 宇航学报, 2009, 30(5):1803-1807. TANG W, GUI Y W, WANG A L. Proposal of thermal configuration optimization design for a maneuverable vehicle[J]. Journal of Astronautics, 2009, 30(5):1803-1807(in Chinese).
[35] VIANA F A C, SIMPSON T W, BALABANOV V, et al. Metamodeling in multidisciplinary design optimization:how far have we really come[J]. AIAA Journal, 2014, 52(4):670-690.
[36] 梁强, 杨永年, 叶正寅. 三维机翼的型架外形设计研究[J]. 西北工业大学学报, 2002, 20(2):262-264. LIANG Q, YANG Y N, YE Z Y. Analysis of jig-shape design for elastic wing[J]. Journal of Northwestern Polytechnical University, 2002, 20(2):262-264(in Chinese).
[37] 黄江涛, 高正红, 白俊强, 等. RBF径向基函数与Delaunay图映射技术在飞行器型架外形设计中应用研究[J]. 空气动力学学报, 2014, 32(3):328-333. HUANG J T, GAO Z H, BAI J Q, et al. Aircraft jig shape design based on radial basis functions and Delaunay graphic mapping[J]. Acta Aerodynamica Sinica, 2014, 32(3):328-333(in Chinese).
[38] 杨智春, 夏巍. 壁板颤振的分析模型、数值求解方法和研究进展[J]. 力学进展, 2010, 40(1):81-98. YANG Z C, XIA W. Analytical models, numerical solutions and advances in the study of panel flutter[J]. Advances in Mechanics, 2010, 40(1):81-98(in Chinese).
[39] 张伟伟, 钟华寿, 肖华, 等. 颤振飞行试验的边界预测方法回顾与展望[J]. 航空学报, 2015, 36(5):1367-1384. ZHANG W W,ZHONG H S, XIAO H, et al. Review and prospect of flutter boundary prediction methods for flight flutter testing[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1367-1384(in Chinese).
[40] XIANG J, YAN Y, LI D. Recent advance in nonlinear aeroelastic analysis and control of the aircraft[J]. Chinese Journal of Aeronautics, 2014, 27(1):12-22.
[41] 许晓平, 祝小平, 周洲, 等. 基于CFD方法的阵风响应与阵风减缓研究[J]. 西北工业大学学报, 2010, 28(6):818-823. XU X P, ZHU X P, ZHOU Z, et al. Further exploring Cfd-based gust response and gust alleviation[J]. Journal of Northwestern Polytechnical University, 2010, 28(6):818-823(in Chinese).
[42] 聂雪媛, 杨国伟. 基于CFD降阶模型的阵风减缓主动控制研究[J]. 航空学报, 2015, 36(4):1103-1111. NIE X Y,YANG G W. Gust alleviation active control based on CFD reduced-order models[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1103-1111(in Chinese).
[43] WANG M, FREUND J B, LELE S K. Computational prediction of flow-generated sound[J]. Annual Review of Fluid Mechanics, 2006, 38:483-512.
[44] FARASSAT F, CASPER J H. Towards an airframe noise prediction methodology:Survey of current approaches[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006.
[45] WAGNER C, HVTTL T, SAGAUT P. Large-eddy simulation for acoustics[M]. London:Cambridge University Press, 2007:441.
[46] 宋文萍, 余雷, 韩忠华. 飞机机体气动噪声计算方法综述[J]. 航空工程进展, 2010(2):125-131. SONG W P, YU L, HAN Z H. Status of investigation on airframe noise computation[J]. Advances in Aeronautical Science and Engineering, 2010(2):125-131(in Chinese).
[47] 李晓东, 江旻, 高军辉, 等. 计算气动声学进展与展望[J]. 中国科学:物理学力学天文学, 2014, 44(3):234-248. LI X D, JIANG M, GAO J H, et al. Progress and prospective of computational aeroacoustics[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(3):234-248(in Chinese).
[48] 陶洋, 范召林, 吴继飞. 基于CFD的方形截面导弹纵向虚拟飞行模拟[J]. 力学学报, 2010, 42(2):169-176. TAO Y, FAN Z L, WU J F. CFD based virtual flight simulation of square cross-section missile with control in longitudinal flight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2):169-176(in Chinese).
[49] 达兴亚, 陶洋, 赵忠良. 基于预估校正和嵌套网格的虚拟飞行数值模拟[J]. 航空学报, 2012, 33(6):977-983. DA X Y, TAO Y, ZHAO Z L. Numerical simulation of virtual flight based on prediction-correction coupling method and chimera grid[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):977-983(in Chinese).
[50] 常兴华, 马戎, 张来平, 等. 基于计算流体力学的"虚拟飞行"技术及初步应用[J]. 力学学报, 2015, 47(4):596-604. CHANG X H, MA R, ZHANG L P, et al. Study on cfd-based numerical virtual flight technology and preliminary application[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4):596-604(in Chinese).
[51] 刘刚, 肖中云, 王建涛, 等. 考虑约束的机载导弹导轨发射数值模拟[J]. 空气动力学学报, 2015, 33(2):192-197. LIU G, XIAO Z Y, WANG J T, et al. Numerical simulation of missile air-launching process under rail slideway constraints[J]. Acta Aerodynamica Sinica, 2015, 33(2):192-197(in Chinese).
[52] 李孝伟, 范绪箕. 基于动态嵌套网格的飞行器外挂物投放的数值模拟[J]. 空气动力学学报, 2004, 22(1):114-117. LI X W, FAN X J. Simulation of the release of store based on the moving chimera grid technique[J]. Acta Aerodynamica Sinica, 2004, 22(1):114-117(in Chinese).
[53] 田书玲, 伍贻兆, 夏健. 用动态非结构重叠网格法模拟三维多体相对运动绕流[J]. 航空学报, 2007, 28(1):46-51. TIAN S L, WU Y Z, XIA J. Simulation of flows past multi-body in relative motion with dynamic unstructured overset grid method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):46-51(in Chinese).
[54] 张玉东, 纪楚群. 子母弹分离过程的数值模拟方法[J]. 空气动力学学报, 2003, 21(1):47-52. ZHANG Y D, JI C Q. The numerical simulation of submution separation processes from dispenser[J]. Acta Aerodynamica Sinica, 2003, 21(1):47-52(in Chinese).
[55] 王建涛, 易贤, 肖中云, et al. ARJ21-700飞机冰脱落数值模拟[J]. 空气动力学学报, 2013, 31(4):430-436. WANG J T,YI X,XIAO Z Y, et al. Numerical simulation of ice shedding from ARJ21-700[J]. Acta Aerodynamica Sinica, 2013, 31(4):430-436(in Chinese).
[56] BALLMANN J, BOUCKE A, CHEN B, et al. Aero-structural wind tunnel experiments with elastic wing models at high Reynolds numbers (HIRENASD-ASDMAD):AIAA-2011-882[R]. Reston:AIAA, 2011.
[57] XU G L, JIANG X, LIU G. Delayed-detached-eddy simulation of fighter aircraft at high angle of attack[J]. Acta Mechanica Sinica, 2016, 32(4):588-603.
[58] 唐志共, 张益荣, 陈坚强, 等. 更准确、更精确、更高效——高超声速流动数值模拟研究进展[J]. 航空学报, 2015, 36(1):120-134. TANG Z G, ZHANG Y R, CHEN J Q, et al. More fidelity, more accurate, more efficient-Progress on numerical simulations for hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):120-134(in Chinese).
[59] MENTER F R. Improved two-equation k-ω turbulence models for aerodynamic flows:NASA/TM-1992-103975[R]. Washington, D.C.:NASA, 1992.
[60] CRAFT T J, LAUNDER B E, SUGA K. Development and application of a cubic eddy-viscosity model of turbulence[J]. International Journal of Heat and Fluid Flow, 1996, 17:108-115.
[61] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):562-589(in Chinese).
[62] SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91:99-164.
[63] SPALART P R, JOU W H, STRELETS M, et al. Comments of feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//1st AFOSR International Conference on DNS/LES, 1997.
[64] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195.
[65] VATSA V N, LOCKARD D P. Assessment of hybrid RANS/LES turbulence mode for aeroacoustics applications:AIAA-2010-4011[R]. Reston:AIAA, 2010.
[66] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
[67] MENTER F R, EGOROV Y. A scale adaptive simulation model using two-equation models:AIAA-2005-1095[J]. Reston, AIAA, 2005.
[68] 陈逖, 刘卫东, 范晓樯, 等. "回收/调节"方法在混合LES/RANS模拟方法中的应用[J]. 航空动力学报, 2011, 26(6):1215-1222. CHEN T, LIU W D, FAN X Q, et al, Application of recycling/rescaling method in hybrid LES/RANS simulation method[J]. Journal of Aerospace Power, 2011, 26(6):1215-1222(in Chinese).
[69] JIANG Y, MAO M L, DENG X G, et al. Numerical investigation on body-wake flow interaction over rod-airfoil configuration[J]. Journal of Fluid and Mechanics, 2015, 779:1-35.
[70] MAO M L, JIANG Y, DENG X G, et al. Noise prediction in subsonic flow using seventh-order dissipative compact scheme on curvilinear mesh[J]. Advances in Applied Mathematics & Mechanics, 2016, 8(2):236-256.
[71] 张坤, 宋文萍. 基于线性稳定性分析的eN方法在准确预测翼型气动特性中的应用[J]. 西北工业大学学报, 2011, 27(3):294-299. ZHANG K, SONG W P. Application of the full eN transition prediction method to aerodynamic characteristics calculation of accurate airfoils[J]. Journal of Northwestern Polytechnical University, 2011, 27(3):294-299(in Chinese).
[72] VAN INGEN J L. A suggested semi-empirical method for the calculation of the boundary-layer transition region[J]. Journal of Applied Physics, 1956, 9(15):112-147.
[73] PERRAUD J, ARNAL D, CASALIS G, et al. Automatic transition predictions using simplified methods[J]. AIAA Journal, 2009, 47(11):2676-2684.
[74] BERTOLOTTI F P. Linear and nonlinear stability of boundary layers with streamwise varying properties[D]. Columbus:The Ohio State University, 1990.
[75] BERTOLOTTI F P, HERBERT T, SPALART P. Linear and nonlinear stability of the Blasius boundary[J]. Journal of Fluid Mechanics, 1992, 242:441-474.
[76] HERBERT T. Parabolized stability equations[J]. Annual Review of Fluid Mechanics, 1997, 29:245-283.
[77] 徐国亮, 符松. 可压缩横流失稳及其控制[J]. 力学进展, 2012, 42(3):262-273. XU G L, FU S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3):262-273(in Chinese).
[78] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128:413-422.
[79] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[80] LANGTRY R B, MENTER F R. Transition modeling for general CFD application in aeronautics:AIAA-2005-522[R]. Reston:AIAA, 2005.
[81] 张玉伦, 王光学, 孟德虹, 等. γ-Reθ转捩模型的标定研究[J]. 空气动力学学报, 2011, 29(3):295-301. ZHANG Y L, WANG G X, MENG D H,et al. Calibration of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2011, 29(3):295-301(in Chinese).
[82] 牟斌, 江雄, 肖中云, 等. γ-Re转捩模型的标定与应用[J]. 空气动力学学报, 2012, 31(1):103-109. MOU B, JIANG X, XIAO Z Y, et al. Implementation and caliberation of γ-Re transition model[J]. Acta Aerodynamica Sinica, 2012, 31(1):103-109(in Chinese).
[83] CHENG G, NICHOLS R, NEROORKAR K D, et al. Validation and assessment of turbulence transition models:AIAA-2009-1141[R]. Reston:AIAA, 2009.
[84] BENSASSI K, LANI A, RAMBAUD P. Numerical investigations of local correlation-based transition model in hypersonic flows:AIAA-2012-3151[R]. Reston:AIAA, 2012.
[85] 张晓东, 高正红. 关于补充Langtry的转捩模型经验修正式的数值探讨[J]. 应用数学和力学, 2010, 31(5):544-552. ZHANG X D, GAO Z H. Numerical discuss to complete empirical correlation in Langtry's transition model[J]. Applied Mathematics and Mechanics, 2010, 31(5):544-552(in Chinese).
[86] CODER J G, MAUGHMER M D. A CFD-compatible transition model using an amplification factor transport equation:AIAA-2013-0253[J]. Reston:AIAA, 2013.
[87] SCHMITT V, MONNERIS B, DOREY G, et al. Etude de la couche limite tridimensionelle sur une aile en fleche:Rapport Technique No 14/1713 AN[R]. 1975.
[88] COCKBURN B, KARNIADAKIS G E, SHU C W. Discontinuous Galerkin methods:Theory, computation and applications[M]. Berlin Heidelberg:Springer, 2000.
[89] ZHANG L, LIU W, HE L, et al. A class of hybrid DG/FV methods for conservation laws I:Basic formulation and one-dimensional systems[J]. Journal of Computational Physics, 2012, 231:1081-1103.
[90] ZHANG L, LIU W, HE L, et al. A class of hybrid DG/FV methods for conservation laws II:Two-dimensional cases[J]. Journal of Computational Physics, 2012, 231:1104-1120.
[91] ZHANG L, LIU W, HE L, et al. A class of hybrid DG/FV methods for conservation laws III:Two-dimensional Euler equations[J]. Communications in Computational Physics, 2012, 12(1):284-314.
[92] ZHANG L, LIU W, LI M, et al. A class of DG/FV hybrid schemes for conservation law IV:2D viscous flows and implicit algorithm for steady cases[J]. Computers & Fluids, 2014, 97:110-125.
[93] VAN DER WEIDE E, DECONINCK H, ISSMANNE, et al. Fluctuation splitting schemes for multidimensional convection problem:An alternative to finite volume and finite element methods[J]. Computational Mechanics, 1999, 23(2):199-208.
[94] DECONINCK H, SERMEUS K, ABGRALL R. Status of multidimensional upwind residual distribution schemes and applications in aeronautics:AIAA-2000-2328[R]. Reston:AIAA, 2000.
[95] ABGRALL R, MEZINE M. Construction of second order accurate monotone and stable residual distribution schemes for steady problems[J]. Journal of Computational Physics, 2004, 195:474-507.
[96] LELE S K. Compact finite schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1):16-42.
[97] CASPER J, MEADOWS K R. Using high-order accurate essentially nonoscillatory schemes for aeroacoustic applications[J]. AIAA Journal, 1996, 34(2):244-250.
[98] DENG X G, MIN Y, MAO M L, et al. Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239:90-111.
[99] 王光学, 邓小刚, 刘化勇, 等. 高阶精度格式WCNS在三角翼大攻角模拟中的应用研究[J]. 空气动力学学报, 2012, 30(1):28-33 WANG G X,DENG X G, LIU H Y, et al. Application of high-order scheme (WCNS) at high angles of incidence for delta wing[J]. Acta Aerodynamica Sinica,2012,30(1):28-33(in Chinese).
[100] 李松, 王光学, 王运涛, 等. WCNS格式在梯形翼高升力构型模拟中的应用研究[J]. 空气动力学学报, 2014, 32(4):439-445. LI S,WANG G X, WANG Y T, et al. Numerical simulation of high lift trapezoidal wing configuration with WCNS-scheme[J]. Acta Aerodynamica Sinica,2014, 32(4):439-445(in Chinese).
[101] 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015, 36(9):2923-2929. WANG Y T, SUN Y, WANG G X, et al. High-order accuracy numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2923-2929(in Chinese).
[102] LIU X Q, QIN N. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211:405-423.
[103] BUHMANN M. Radial basis functions[M]. Cambridge:Cambridge University Press, 2005.
[104] WENDLAND H. Fast evaluation of radial basis functions:Methods based on partition of unity[M]//Approximation Theory X:Wavelets, Splines, and Applications. Nashville, TX:Vanderbilt University Press, 2002:473-483.
[105] HUANG J, GAO Z, WANG C. A new grid deformation technology with high quality and robustness based on quaternion[J]. Chinese Journal of Aeronautics, 2014, 27(5):1078-1085.
[106] SPEKREIJSE S P, BOERSTOEL J W. An algorithm to check the topological validity of multiblock domain decompositions[C]//Proceedings 6th International Conference on Numerical Grid Generation in Computational Field Simulations, 1998.
[107] MARUYAMA D, BAILLY D, CARRIER G. High quality grid deformation using quaternions for orthogonality preservation:AIAA-2012-0063[R]. Reston:AIAA, 2012.
[108] SMITH RE. Transfinite interpolation (TFI) generation systems[M]//WEATHERILL N P, THOMPSON J F, SONI B K. Handbook of Grid Generation. CRC Press, 1999.
[109] FARHAT C, DEGAND C, KOOBUS B, et al. Torsional springs for two-dimensional dynamic unstructured fluid grides[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 163(1):231-245.
[110] LI Z H, ZHANG H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics, 2004, 193(2):708-738.
[111] SLOTNICK J, KHODADOUST A, ALONSO J. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014. |