[1] 陈章位, 于慧君. 振动控制技术现状与进展[J]. 振动与冲击, 2009, 28(3):73-77. CHEN Z W, YU H J. Existing state and development of vibration control technology[J]. Journal of Vibration and Shock, 2009, 28(3):73-77(in Chinese).
[2] CONNON I W. Comments on kurtosis of military vehicle vibration data[J]. Journal of the IES, 1991, 34(6):38-41.
[3] 李锦华, 李春祥, 申建红. 非高斯脉动风压的模拟研究[J]. 振动与冲击, 2009, 28(9):5-8. LI J H, LI C X, SHEN J H. Simulation of non-Guassian fluctuating wind pressure[J]. Journal of Vibration and Shock, 2009, 28(9):5-8(in Chinese).
[4] XU F, LI C R, JIANG T M. On the shaker simulation of wind-induced non-Gaussian random vibration[J]. Shock and Vibration, 2016, 2016(6):1-10.
[5] 蒋培, 张春华, 陈循, 等. 超高斯随机振动环境的疲劳强化机理[J]. 国防科技大学学报, 2004, 28(3):99-102. JIANG P, ZHANG C H, CHEN X, et al. Fatigue enhancement mechanism of the super-Gaussian random vibration environment[J]. Journal of National University of Defense Technology, 2004, 28(3):99-102(in Chinese).
[6] VAN BAREN J, VAN BAREN P, JENISON M I. The third dimension of random vibration control:2007.01.2270[R]. Warrendale, PA:SAE International, 2007.
[7] STEINWOLF A. Shaker random testing with low kurtosis:Review of the methods and application for sigma limiting[J]. Shock and Vibration, 2010, 17(3):219-231.
[8] WINTERSTEIN S R. Nonlinear vibration models for extremes and fatigue[J]. Journal of Engineering Mechanics, 1988, 114(10):1772-1790.
[9] SMALLWOOD D O. Generation of stationary non-Gaussian time histories with a specified cross-spectral density[J]. Shock and Vibration, 1997, 4(5-6):361-377.
[10] SMALLWOOD D O. Generating non-Gaussian vibration for testing purposes[J]. Sound and Vibration, 2005, 39(10):18-23.
[11] HSUEH K D, HAMERNIK R P. A generalized approach to random noise synthesis:Theory and computer simulation[J]. The Journal of the Acoustical Society of America, 1990, 87(3):1207-1217.
[12] STEINWOLF A. Approximation and simulation of probability distributions with a variable kurtosis value[J]. Computational Statistics & Data Analysis, 1996, 21(2):163-180.
[13] STEINWOLF A. Shaker random testing with low kurtosis:Review of the methods and application for sigma limiting[J]. Shock and Vibration, 2010, 17(3):219-231.
[14] STEINWOLF A. Vibration testing by non-Gaussian random excitations with specified kurtosis. Part II:Numerical and experimental results[J]. Journal of Testing and Evaluation, 2014, 42(3):672-686.
[15] 蒋瑜, 陶俊勇, 王得志, 等. 一种新的非高斯随机振动数值模拟方法[J]. 振动与冲击, 2012, 31(19):169-173. JIANG Y, TAO J Y, WANG D Z, et al. A novel approach for the numerical simulation of non-Gaussian random vibration[J]. Journal of Vibration and Shock, 2012, 31(19):169-173(in Chinese).
[16] 陈家焱, 陈章位, 周建川, 等. 基于泊松过程的超高斯随机振动试验控制技术研究[J]. 振动与冲击, 2012, 31(6):19-22. CHEN J Y, CHEN Z W, ZHOU J C, et al. Super-Gaussian random vibration test control technique based on Poisson process[J]. Journal of Vibration and Shock, 2012, 31(6):19-22(in Chinese).
[17] 陈怀海, 王鹏宇, 孙建勇. 基于逆系统方法的多输入多输出非高斯驱动信号生成[J]. 航空学报, 2016, 37(5):1544-1551. CHEN H H, WANG P Y, SUN J Y. Generating multi-input multi-output non-Gaussian driving signal based on inverse system method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1544-1551(in Chinese).
[18] Department of Defense. Test method standard for environmental engineering considerations and laboratory test:MIL-STD-810G (w/CHANGE-1)[S]. Washington, D.C.:Department of Defense, 2014.
[19] SMALLWOOD D O. Multiple shaker random vibration control-An update[R]. Albuquerque, NM:Sandia National Labs, 1999.
[20] 蒋瑜, 陈循, 陶俊勇. 基于时域随机化的超高斯真随机驱动信号生成技术研究[J]. 振动工程学报, 2005, 18(4):491-494. JIANG Y, CHEN X, TAO J Y. Study on the generation of super-Gaussian and true-random drive signals using time domain randomization[J]. Journal of Vibration Engineering, 2005, 18(4):491-494(in Chinese).
[21] 黄海, 王海强, 李伟鹏, 等. 一种六自由度振动激励系统:CN104865034A[P]. 2015-08-26. HUANG H, WANG H Q, LI W P, et al. A six degree of freedom vibration excitation system:CN104865034A[P]. 2015-08-26(in Chinese). |