| [1] |
ROSEN A, ISSER A. A new model of rotor dynamics during pitch and roll of a hovering helicopter[J]. Journal of the American Helicopter Society, 1995, 40(3): 17-28.
|
| [2] |
PITT D M, PETERS D A. Theoretical prediction of dynamic-inflow derivatives[C]∥9th European Rotorcraft Forum. 1980.
|
| [3] |
ZHOU X, ZHANG X Y, WANG B, et al. Aerodynamic and structural characteristics of helicopter rotor in circling flight[J]. Chinese Journal of Aeronautics, 2023, 36(12): 282-296.
|
| [4] |
王俊超, 谭剑锋, 李建波, 等. 基于自由尾迹方法的自转旋翼气动特性研究[J]. 航空学报, 2015, 36(11): 3540-3548.
|
|
WANG J C, TAN J F, LI J B, et al. Investigation of autorotating rotor aerodynamic characteristics based on free wake method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3540-3548 (in Chinese).
|
| [5] |
BHAGWAT M J, LEISHMAN J G. Generalized viscous vortex model for application to free-vortex wake and aeroacoustic calculations[C]∥Proceedings of the Annual Forum Proceedings-American Helicopter Society. 2002.
|
| [6] |
KOMERATH N M, SMITH M J, TUNG C. A review of rotor wake physics and modeling[J]. Journal of the American Helicopter Society, 2011, 56(2): 22006.
|
| [7] |
JAIN R. Hover predictions for the S-76 rotor with tip shape variation using CREATE-AV helios[C]∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
|
| [8] |
NARDUCCI R. Hover performance assessment of several tip shapes using OVERFLOW[C]∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
|
| [9] |
GHARAKHANI A, GHONIEM A F. Three-dimensional vortex simulation of time dependent incompressible internal viscous flows[J]. Journal of Computational Physics, 1997, 134(1): 75-95.
|
| [10] |
PLOUMHANS P, WINCKELMANS G S, SALMON J K, et al. Vortex methods for direct numerical simulation of three-dimensional bluff body flows: Application to the sphere at Re=300, 500, and 1 000[J]. Journal of Computational Physics, 2002, 178(2): 427-463.
|
| [11] |
HE C J, ZHAO J G. Modeling rotor wake dynamics with viscous vortex particle method[J]. AIAA Journal, 2009, 47(4): 902-915.
|
| [12] |
LAKKIS I, GHONIEM A. A high resolution spatially adaptive vortex method for separating flows. Part Ⅰ: Two-dimensional domains[J]. Journal of Computational Physics, 2009, 228(2): 491-515.
|
| [13] |
STOCK M J, GHARAKHANI A. Solution-responsive particle size adaptivity in Lagrangian vortex particle methods[C]∥ASME 2021 Fluids Engineering Division Summer Meeting. 2021.
|
| [14] |
CHENG H, GREENGARD L, ROKHLIN V. A fast adaptive multipole algorithm in three dimensions[J]. Journal of Computational Physics, 1999, 155(2): 468-498.
|
| [15] |
ALVAREZ E J, NING A. Development of a vortex particle code for the modeling of wake interaction in distributed propulsion[C]∥2018 Applied Aerodynamics Conference. Reston: AIAA, 2018.
|
| [16] |
SINGH P, FRIEDMANN P P. Application of vortex methods to coaxial rotor wake and load calculations in hover[J]. Journal of Aircraft, 2017, 55(1): 373-381.
|
| [17] |
TAN J, SUN Y, BARAKOS G N. Unsteady loads for coaxial rotors in forward flight computed using a vortex particle method[J]. The Aeronautical Journal, 2018, 122(1251): 693-714.
|
| [18] |
ALVAREZ E J, NING A. Modeling multirotor aerodynamic interactions through the vortex particle method[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
|
| [19] |
ALVAREZ E J, NING A. High-fidelity modeling of multirotor aerodynamic interactions for aircraft design[J]. AIAA Journal, 2020, 58(10): 4385-4400.
|
| [20] |
谭剑锋, 王浩文, 吴超, 等. 基于非定常面元/黏性涡粒子混合法的旋翼/平尾非定常气动干扰[J]. 航空学报, 2014, 35(3): 643-656.
|
|
TAN J F, WANG H W, WU C, et al. Rotor/empennage unsteady aerodynamic interaction with unsteady panel/viscous vortex particle hybrid method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 643-656 (in Chinese).
|
| [21] |
王清, 招启军, 赵国庆. 旋翼翼型动态失速流场特性PIV试验研究及L-B模型修正[J]. 力学学报, 2014, 46(4): 631-635.
|
|
WANG Q, ZHAO Q J, ZHAO G Q. PIV experiments on flowfield characteristics of rotor airfoil dynamic stall and modifications of L-B model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 631-635 (in Chinese).
|
| [22] |
HODGES D H. Nonlinear composite beam theory[M]. Reston: AIAA, 2006.
|
| [23] |
CHEN J G, SHEN X, LIU P Y, et al. Design tool for aeroelastic analysis of wind turbine blades based on geometrically exact beam theory and lifting surface method[C]∥35th Wind Energy Symposium. Reston: AIAA, 2017.
|
| [24] |
FACCIO C J JR, CARDOZO A C P, MONTEIRO V Jr, et al. Modeling wind turbine blades by geometrically-exact beam and shell elements: A comparative approach[J]. Engineering Structures, 2019, 180: 357-378.
|
| [25] |
WANG L, LIU X W, RENEVIER N, et al. Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory[J]. Energy, 2014, 76: 487-501.
|
| [26] |
SHANG L N, XIA P H, HODGES D H. Aeroelastic response analysis of composite blades based on geometrically exact beam theory[J]. Journal of the American Helicopter Society, 2019, 64(2): 1-14.
|
| [27] |
CHANDRASEKARAN R, HODGES D H. Performance advantages and resonance analysis of a variable speed rotor using geometrically exact beam formulations[J]. Journal of the American Helicopter Society, 2022, 67(4): 1-21.
|
| [28] |
王鑫, 张夏阳, 招启军, 等. 基于VVPM/GEBT耦合方法的旋翼悬停状态总距突增气弹载荷分析[J]. 航空学报, 2025, 46(16): 231628.
|
|
WANG X, ZHANG X Y, ZHAO Q J, et al. Analysis of the aeroelastic loads of rotor during collective pitch ramp increase in hovering state based on VVPM/GEBT coupling method[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(16): 231628 (in Chinese).
|
| [29] |
SINGH P, FRIEDMANN P P. A computational fluid dynamics-based viscous vortex particle method for coaxial rotor interaction calculations in hover[J]. Journal of the American Helicopter Society, 2018: 63(4): 1-13.
|
| [30] |
WILLIAMSON J H. Low-storage Runge-Kutta schemes[J]. Journal of Computational Physics, 1980, 35(1): 48-56.
|
| [31] |
KOMP D, KUMAR S, HAJEK M, et al. Effect of active camber morphing on rotor performance and control loads[J]. Aerospace Science and Technology, 2021, 108: 106311.
|
| [32] |
张凯, 招启军, 马砾, 等. 基于CFD/CSD耦合方法的旋翼降转速气动特性[J]. 航空动力学报, 2024, 39(12): 20230074.
|
|
ZHANG K, ZHAO Q J, MA L, et al. Slowed rotor aerodynamic characteristics using CFD/CSD coupling method[J]. Journal of Aerospace Power, 2024, 39(12): 20230074 (in Chinese).
|
| [33] |
SITARAMAN J, BAEDER J, CHOPRA I. Validation of UH-60 rotor blade aerodynamic characteristics using CFD[C]∥Proceedings of the Annual Forum Proceedings-American Helicopter Society. 2003.
|
| [34] |
REVELES N. Advanced methods for dynamic aeroelastic analysis of rotors[D]. Atlanta: Georgia Institute of Technology, 2014.
|