Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (12): 31030.doi: 10.7527/S1000-6893.2024.31030
• Reviews •
Feiyan GUO1(
), Qun YAN2, Yongliang ZHANG3, Qingdong XIAO4, Jinkang SHI1, Zhongqi WANG5
Received:2024-08-01
Revised:2024-09-18
Accepted:2024-10-27
Online:2025-02-13
Published:2025-02-12
Contact:
Feiyan GUO
E-mail:2009200890@mail.nwpu.edu.cn
Supported by:CLC Number:
Feiyan GUO, Qun YAN, Yongliang ZHANG, Qingdong XIAO, Jinkang SHI, Zhongqi WANG. Influence of assembly geometric and physical properties of aircraft composite structure on service performance[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(12): 31030.
| [1] | 郭东明. 高性能制造[J]. 机械工程学报, 2022, 58(21): 225-242. |
| GUO D M. High performance manufacturing[J]. Journal of Mechanical Engineering, 2022, 58(21): 225-242 (in Chinese). | |
| [2] | 李国琛, 王强, 钟贵勇, 等. 装配公差对结构疲劳可靠性寿命的影响[J]. 航空科学技术, 2022, 33(3): 106-110. |
| LI G C, WANG Q, ZHONG G Y, et al. Influence of assembly tolerance on fatigue reliability life of aircraft structures[J]. Aeronautical Science & Technology, 2022, 33(3): 106-110 (in Chinese). | |
| [3] | 李伟, 闫雨哲, 李兆远, 等. 装配间隙对飞机结构强度影响研究[J]. 飞机设计, 2022, 42(2): 13-16. |
| LI W, YAN Y Z, LI Z Y, et al. Research on the influence of assembly clearance on aircraft structural strength[J]. Aircraft Design, 2022, 42(2): 13-16 (in Chinese). | |
| [4] | 赵丽滨, 山美娟, 彭雷, 等 .制造公差对复合材料螺栓连接结构强度分散性的影响[J]. 复合材料学报, 2015, 32(4): 1092-1098. |
| ZHAO L B, SHAN M J, PENG L, et al. Effect of manufacturing tolerance on strength scatter of composite bolted joint structure[J]. Acta Material Composite Sinica, 2015, 32(4): 1092-1098 (in Chinese). | |
| [5] | 葛恩德, 尚艳伟, 刘学术, 等. 装配间隙对复合材料构件弯曲疲劳性能的影响研究[J]. 复合材料科学与工程, 2021 (9): 99-106. |
| GE E D, SHANG Y W, LIU X S, et al. Influence of assembly gap on fatigue performance of composite components under bending load[J]. Composites Science and Engineering, 2021 (9): 99-106 (in Chinese). | |
| [6] | 宋学官, 李昆鹏, 胡正国, 等. 浅论设计与制造的协同问题[J/OL]. 机械工程学报, (2023-10-08) [2024-11-08]. . |
| SONG X G, LI K P, HU Z G, et al. A discussion on the collaboration problem of design and manufacturing[J]. Journal of Mechanical Engineering, (2023-10-08) [2024-11-08]. (in Chinese). | |
| [7] | 杨亚鹏, 赵安安, 杜坤鹏, 等. 飞机复材主承力结构数字化高性能装配协调技术研究与应用[J]. 航空制造技术, 2024, 67(16): 14-31. |
| YANG Y P, ZHAO A A, DU K P, et al. Research and application of digital high performance assembly coordination technology for aircraft composite primary structure[J]. Aeronautical Manufacturing Technology, 2024, 67(16): 14-31 (in Chinese). | |
| [8] | 余海东, 高畅, 赵勇, 等. 机械产品装配偏差分析方法研究进展与展望[J]. 机械工程学报, 2023, 59(9): 212-229. |
| YU H D, GAO C, ZHAO Y, et al. Progress and prospect on assembly deviation propagation of mechanical products[J]. Journal of Mechanical Engineering, 2023, 59(9): 212-229 (in Chinese). | |
| [9] | GUO F, HOU Y, XIAO Q, et al. Reliability improvement on assembly accuracy with maximum out-of-tolerance probability analysis and prior precise repair optimization[J]. Advanced Engineering Informatics, 2023, 55(1): 101866. |
| [10] | 张永亮. 面向航空装配的间隙阶差视觉测量技术研究[D]. 杭州: 浙江大学, 2023: 1-60. |
| ZHANG Y L. Research on visual measurement technology of gap step difference for aviation assembly[D]. Hangzhou: Zhejiang University, 2023: 1-60 (in Chinese). | |
| [11] | WEN Y, YUE X, HUNT J, et al. Virtual assembly and residual stress analysis for the composite fuselage assembly process[J]. Journal of Manufacturing Systems, 2019, 52(7): 55-62. |
| [12] | XIA K, YU G, ZHAO L, et al. An efficient model for predicting complex delamination front of elastic coupling laminates[J]. Composite Structures, 2023, 321: 117273. |
| [13] | Lockheed Matin. . |
| [14] | Lockheed Matin. . |
| [15] | TURNER D, ERION D, FINCHAMP T, et al. Assembly of an aircraft structure assembly without shimming, locating fixtures or final-hole-size drill jigs: US9925625B2[P]. 2018-03-27. |
| [16] | 郭飞燕, 肖世宏, 肖庆东, 等. 面向性能保障的新一代飞机结构装配质量控制技术[J]. 机械工程学报, 2024, 60(16): 412-428. |
| GUO F Y, XIAO S H, XIAO Q D, et al. Structure assembly quality controlling technology oriented to performance assurance for new-generation aircraft[J]. Journal of Mechanical Engineering, 2024, 60(16): 412-428 (in Chinese). | |
| [17] | LIU F, FANG Z, ZHAO L, et al. A failure-envelope-based method for the probabilistic failure prediction of composite multi-bolt double-lap joints[J]. Composites Part B: Engineering, 2019, 172(9): 593-602. |
| [18] | ASKRI R, BOIS C, WARGNIER H. Effect of hole-location error on the strength of fastened multi-material joints[J]. Procedia CIRP, 2016, 43: 292-296. |
| [19] | GORBANPOOR V, TABRIZI M, AFSHIN H. Experimental investigation of the shape effect on the mechanical behavior of granular materials under uniaxial loading with lateral confinement[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(7): 1-7. |
| [20] | 胡鹏. 基于垫片补偿的复合材料螺栓连接结构拉伸性能研究[D]. 南京: 南京航空航天大学, 2023: 1-80. |
| HU P. Study on tensile properties of composite bolted joints structure based on gap-filling compensation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023: 1-80 (in Chinese). | |
| [21] | 岳烜德, 安鲁陵, 云一珅, 等. 液体垫片对复合材料装配结构应力和应变的影响[J]. 复合材料学报,2018, 35(10): 2665-2677. |
| YUE X D, AN L L, YUN Y S, et al. Effect of liquid shim on stress and strain of composite assembly structure[J]. Acta Materiae Compositae Sinica, 2018, 35(10):2665-2677 (in Chinese). | |
| [22] | HUHNE C. Progressive damage analysis of composite bolted joints with liquid shim layers using constant and continuous degradation models[J]. Composite Structures, 2010, 92: 189-200. |
| [23] | ANTOLIN-URBANEJA J, LIVINALLI J, PUETEO M, et al. End-effector for automatic shimming of composites[C]∥Proceedings of SAE 2016 Aerospace Manufacturing and Automated Fastening Conference & Exhibition, 2016. |
| [24] | 张桂书. 飞机复合材料构件装配间隙补偿研究[D]. 南京: 南京航空航天大学, 2016: 1-78. |
| ZHANG G S. Research on assembly gap compensation for aircraft composite components[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 1-78 (in Chinese). | |
| [25] | ATTAHU C, AN L. Influence of assembly gap and shims on the strain and stress of bolted composite-aluminum structures[J]. ARPN Journal of Engineering and Applied Sciences, 2017, 12(5): 1593-1617. |
| [26] | 叶鑫. 填隙补偿对复合材料-铝合金连接结构力学性能的影响[D]. 南京: 南京航空航天大学, 2021: 1-69. |
| YE X. Effect of gap-filling compensation on mechanical properties of composite-aluminum connection structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 1-69 (in Chinese). | |
| [27] | ZOU P, CHEN H, BI X. Analysis on failure mechanism of CFRP double-tap interference-fit joint[C]∥IOP Conference Series Materials Science and Engineering, 2020. |
| [28] | 谢阶栋, 陈果, 曾馨靓, 等. 高锁螺栓装配的最佳干涉量试验与仿真研究[J]. 机械强度, 2018, 40(6): 1321-1329. |
| XIE J D, CHEN G, ZENG X L, et al. Experiment and simulation research of the optimum interference of hi-lock assembly[J]. Journal of Mechanical Strength, 2018, 40(6): 1321-1329 (in Chinese). | |
| [29] | 邵远新, 王伟龙, 张磊, 等.装配间隙对疲劳寿命影响的分析方法研究[J]. 飞机设计, 2017, 37(6): 40-42. |
| SHAO Y X, WANG W L, ZHANG L, et al. Analysis method of the fatigue life affected by assembly clearance[J]. Aircraft Design, 2017, 37(6): 40-42 (in Chinese). | |
| [30] | ZHAO Q, YU T, PANG T, et al. Spline wear life prediction considering multiple errors[J]. Engineering Failure Analysis, 2022, 131(1): 105804. |
| [31] | ISLAM M, ULVEN A. A thermo graphic and energy based approach to define high cycle fatigue strength of flax fiber reinforced thermoset composites[J]. Composites Science and Technology, 2020, 196: 108233. |
| [32] | SHAN M, ZHAO L, HONG H, et al. A progressive fatigue damage model for composite structures in hydrothermal environments[J]. International Journal of Fatigue, 2018, 111: 299-307. |
| [33] | YANG X, BAI Y, LUO F, et al. Dynamic and fatigue performances of a large-scale space frame assembled using pultruded GFRP composites[J]. Composite Structures, 2016, 138: 227-236. |
| [34] | RICHARD H, LINNIG W, HENN K. Fatigue crack propagation under combined loading[J]. Forensic Engineering, 1992, 3(2-3): 99-109. |
| [35] | ZHANG Z, LIU R, ZHANG K, et al. JK-integral applied to mixed-mode fatigue crack propagation and life prediction in metal welding interface[J]. International Journal of Solids and Structures, 2023, 268: 112184. |
| [36] | 王锡芝, 张剑伟, 刘贞言, 等. 飞机紧固孔周疲劳裂纹扩展微观分析[J]. 山西大同大学学报(自然科学版), 2023, 39(5): 22-26. |
| WANG X Z, ZHANG J W, LIU Z Y, et al. Microscopic analysis of fatigue crack propagation around connection holes of aircraft fasteners[J]. Journal of Shanxi Datong University (Natural Science Edition), 2023, 39(5): 22-26 (in Chinese). | |
| [37] | 吕雄飞, 张文斌, 袁强飞. 基于疲劳寿命的民用飞机舱门止动块允许间隙[J]. 民用飞机设计与研究, 2023(1): 62-67. |
| LV X F, ZHANG W B, YUAN Q F. Allowable clearance of door stops for civil aircraft based on fatigue life[J]. Civil Aircraft Design & Research, 2023(1): 62-67 (in Chinese). | |
| [38] | 陈志英, 王朝, 周平. 考虑榫槽/榫齿配合间隙的叶盘结构疲劳寿命稳健性优化研究[J]. 推进技术, 2018, 39(4): 857-864. |
| CHEN Z Y, WANG C, ZHOU P. Research on robot optimization of fatigue life for blade-disk considering contact gap between tendon and mortise[J]. Journal of Propulsion Technology, 2018, 39(4): 857-864 (in Chinese). | |
| [39] | 张岐良. 飞机轻量化结构干涉配合强化的理论与仿真研究[D]. 西安: 西北工业大学, 2015: 1-90. |
| ZHANG Q L. Fatigue enhancing theory and simulation study of interference fitting in light-weight aircraft structures[D]. Xi’an: Northwestern Polytechnical University, 2015: 1-90 (in Chinese). | |
| [40] | KUMAR S, RAJESH R, PUGAZHENDHI S. A review of stress concentration studies on fiber composite panels with holes/cutouts[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234(11): 1461-1472. |
| [41] | 王世杰, 陈振, 徐鹏, 等. 复合材料加筋壁板装配应力对结构失效影响的试验与数值分析[J]. 复合材料科学与工程, 2021(4): 96-101. |
| WANG S J, CHEN Z, XU P, et al. Experimental and numerical analysis of the effect of the assembly stress on the composite stiffened panel failure[J]. Composites Science and Engineering, 2021(4): 96-101 (in Chinese). | |
| [42] | RAMIREZ J, WOLLNACK J. Flexible automated assembly systems for large CFRP structures[J]. Procedia Technology, 2014(15): 447-455. |
| [43] | MBAREK T, MEISSNER A, BIYIKLIOGLU N. Positioning system for the aircraft structural assembly[C]∥SAE 2011 AeroTech Congress and Exhibition, 2011. |
| [44] | 王琰, 郭定文. 气动环境下结构噪声载荷谱编制方法[J]. 应用力学学报, 2023, 40(2): 275-281. |
| WANG Y, GUO D W. A method for compiling structure sound load spectrum in aerostatic environment[J]. Chinese Journal of Applied Mechanics, 2023, 40(2): 275-281 (in Chinese). | |
| [45] | 徐可君, 肖阳, 秦海勤, 等. 基于循环应变特征的疲劳-蠕变寿命预测方法[J]. 航空学报, 2021, 42(5): 524109. |
| XU K J, XIAO Y, QIN H Q, et al. Fatigue-creep life prediction based on cyclic strain characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524109 (in Chinese). | |
| [46] | 王常宇, 李政广, 秦海勤, 等. 基于推广疲劳-蠕变等效转换理论的高温条件载荷谱编制方法[J]. 推进技术, 2022, 43(9): 328-334. |
| WANG C Y, LI Z G, QIN H Q, et al. Method for load spectrum compiling spectra under high temperature conditions based on generalized equivalent transformation theory of fatigue-creep load[J]. Journal of Propulsion Technology, 2022, 43(9): 328-334 (in Chinese). | |
| [47] | CAUICH-CUPUL J, VALADEZ-GONZALEZ A, PEREZ-PACHECO E, et al. Effect of moisture absorption on the micromechanical behavior of carbon fiber/epoxy matrix composites[J]. Journal of Material Science, 2011, 46: 6664-6672. |
| [48] | YAN L, CHOUW N. Effect of water, seawater and alkaline solution ageing on mechanical properties of flax fabric/epoxy composites used for civil engineering applications[J]. Construction and Building Materials, 2015, 99: 118-127. |
| [49] | VIEILLE B, AUCHER J, TALEB L. Comparative study on the behavior of woven-ply reinforced thermoplastic or thermosetting laminates under severe environmental conditions[J]. Materials & Design, 2012, 35: 707-719. |
| [50] | 胡俊山. 力热耦合的复合材料干涉连接结构松弛演化与失效机理[D]. 西安: 西北工业大学, 2022: 1-116. |
| HU J S. Preload relaxation and failure mechanism of CFRP composite interference-fit joints under thermal-mechanical coupling effects[D]. Xi’an: Northwestern Polytechnical University, 2022: 1-116 (in Chinese). | |
| [51] | TAGHIZADEH H, CHAKHERLOU T. Fatigue behavior of interference fitted Al-alloy 7075-T651 specimens subjected to bolt tightening[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(9): 1879-1893. |
| [52] | KARTHIK P, KOBYE B, GYU-HYEONG L, et al. Improving load sharing in hybrid bonded/bolted composite joints using an interference-fit bolt[J]. Composite Structures, 2016, 149: 329-338. |
| [53] | 赵旭升, 陈果, 张旭, 等. 装配应力对飞机管道随机疲劳寿命的影响分析与试验验证[J]. 机械强度, 2024, 46(1): 208-215. |
| ZHAO X S, CHEN G, ZHANG X, et al. Analysis and experimental verification of the effect of assembly stress on the random fatigue life of aircraft pipeline[J]. Journal of Mechanical Strength, 2024, 46(1): 208-215 (in Chinese). | |
| [54] | GUO S, ZHANG W, YIN P, et al. Cyclic welded joints under thermo mechanical fatigue loadings[J]. International Journal of Fatigue, 2021, 147: 106183. |
| [55] | TAHERI F, KASHANI A, HEFZABAD R. Effects of material nonlinearity on load distribution in multi-bolt composite joints[J]. Composite Structures, 2015, 125:195-201. |
| [56] | HAEGER A, GRUDENIK M, HOFFMANN M. Effect of drilling-induced damage on the open hole flexural fatigue of carbon/epoxy composites[J]. Composite Structures, 2019, 215: 238-248. |
| [57] | 丁勇军, 陈强, 王佳良, 等. 热声环境下燃烧室结构高频疲劳寿命评估方法[J]. 工程力学, (2024-02-22) [2024-11-08]. . |
| DING Y J, CHEN Q, WANG J L, et al. High-frequency fatigue life evaluation method of combustion chamber structure in thermal-acoustic environment[J]. Engineering Mechanics, (2024-02-22) [2024-11-08]. (in Chinese). | |
| [58] | 陈克明, 田若洲, 郭素娟, 等. 循环热机载荷作用下航空涡轮盘蠕变疲劳寿命预测[J]. 航空学报, 2022, 43(5): 225290. |
| CHEN K M, TIAN R Z, GUO S J, et al. Creep fatigue life prediction of aero-engine turbine disc under cyclic thermal load[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 225290 (in Chinese). | |
| [59] | 杨博文, 高强, 王硕, 等. 基于面面接触结构的高温微动疲劳寿命预测研究[J]. 机械工程学报, 2023, 59(18): 165-174. |
| YANG B W, GAO Q, WANG S, et al. Research on high temperature fretting fatigue life prediction based on surface-to-surface contact structure[J]. Journal of Mechanical Engineering, 2023, 59(18): 165-174 (in Chinese). | |
| [60] | 樊俊铃, 张伟, 焦婷, 等. 飞机结构螺栓连接细节疲劳断裂失效机制与寿命分析[J]. 机械强度, 2023, 45(6): 1459-1464. |
| FAN J L, ZHANG W, JIAO T, et al. Failure mechanism of fatigue fracture and life analysis for bolted joint of aircraft structure[J]. Journal of Mechanical Strength, 2023, 45(6): 1459-1464 (in Chinese). | |
| [61] | YOUSSEF G, FREOUR S, JACQUEMIN F. Stress-dependent moisture diffusion in composite materials[J]. Journal of Composite Materials, 2009, 43(15): 1621-1637. |
| [62] | 倪迎鸽, 邹鹏, 毕雪. 含损伤复合材料壁板承载能力的试验与仿真模拟现状[J]. 复合材料科学与工程, 2020(10): 110-121. |
| NI Y G, ZOU P, BI X. Experimental and simulation status of bearing capacity of composite panels with damage[J]. Composite Materials Science and Engineering, 2020(10): 110-121 (in Chinese). | |
| [63] | 鲁国富, 刘勇, 张呈林. 含孔复合材料层合板的疲劳寿命研究[J]. 机械科学与技术, 2010, 29(5): 684-689. |
| LU G F, LIU Y, ZHANG C L. A study of the fatigue life of laminated composites with a hole[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(5): 684-689 (in Chinese). | |
| [64] | 单奕萌, 弥世青, 周健, 等. 碳纤维复合材料铆接接头力学性能与失效机制研究[J]. 机械强度, 2023, 45(6): 1483-1492. |
| SHAN Y M, MI S Q, ZHOU J, et al. Study on mechanical performance and failure mechanism of carbon fiber composite riveted joints[J]. Journal of Mechanical Strength, 2023, 45(6): 1483-1492 (in Chinese). | |
| [65] | 汪林, 余海燕. 碳纤维复合材料铆接接头的失效行为和失效机理[J]. 机械设计与研究, 2020, 36(3): 176-181. |
| WANG L, YU H Y. Study on the failure behavior and failure mechanism of CFRP/CFRP riveted joints[J]. Machine Design and Research, 2020, 36(3): 176-181 (in Chinese). | |
| [66] | FENG Y, HE Y, ZHANG H, et al. Effect of fatigue loading on impact damage and buckling post-buckling behaviors of stiffened composite panels under axial compression[J]. Composite Structures, 2017, 164: 248-262. |
| [67] | HU J, ZHANG K, XU Y, et al. Modeling on bearing behavior and damage evolution of single-lap bolted composite interference-fit joints[J]. Composite Structures, 2019, 212: 452-464. |
| [68] | ZHAO L, LI Y, ZHANG J, et al. A novel material degradation model for unidirectional CFRP composites[J]. Composites Part B: Engineering, 2018, 135(2): 84-94. |
| [69] | ZHENG X, ENGLER-PINTO J, SU X, et al. Modeling of fatigue damage under superimposed high-cycle and low-cycle fatigue loading for a cast aluminum alloy[J]. Materials Science and Engineering: A, 2013, 560: 792-801. |
| [70] | XU G, CHENG H, ZHANG K, et al. Modeling of damage behavior of carbon fiber reinforced plastic composites interference bolting with sleeve[J]. Composite Structures, 2020, 194: 108904. |
| [71] | 袁慎芳, 李晓泉, 陈健. 疲劳裂纹扩展的卷积神经网络辨识[J]. 航空科学技术, 2020, 31(7): 64-71. |
| YUAN S F, LI X Q, CHEN J. Convolutional neural network based fatigue crack growth identification[J]. Aeronautical Science & Technology, 2020, 31(7): 64-71 (in Chinese). | |
| [72] | IHN J, CHANG F. Detection and monitoring of hidden fatigue crack growth using riveted joints and repair patches[J]. Smart Materials & Structures, 2004, 13(3): 621-630. |
| [73] | LI M, TIAN W, HU J, et al. Study on shear behavior of riveted lap joints of aircraft fuselage with different hole diameters and squeeze forces[J]. Engineering Failure Analysis, 2022, 127(9): 105499. |
| [74] | JELASKA D. Fatigue assessment for combined HCF/LCF loading[C]∥New Orleans: ASME International Mechanical Engineering Congress and Exposition, 2002. |
| [75] | HAN L, HUANG D, YAN X, et al. Combined high and low cycle fatigue prediction model based on damage mechanics and its application in determining the aluminized location of turbine blade[J]. International Journal of Fatigue, 2019, 127:120-130. |
| [76] | 王妍, 毕俊喜, 葛新宇, 等. 航空发动机叶片高低周复合疲劳寿命预测与损伤机理研究[J]. 内蒙古工业大学学报(自然科学版), 2023, 42(4): 324-329. |
| WANG Y, BI J X, GE X Y, et al. Aero-engine blade high and low circumference composite fatigue life prediction and damage mechanism research[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2023, 42(4): 324-329 (in Chinese). | |
| [77] | 李洪松, 刘永葆, 贺星, 等.考虑耦合损伤的燃气轮机叶片材料高低周复合疲劳寿命研究[J]. 推进技术, 2022, 43(2): 7-13. |
| LI H S, LIU Y B, HE X, et al. Combined high and low cycle fatigue life of gas turbine blade materials considering coupling damage[J]. Journal of Propulsion Technology, 2022, 43(2): 7-13 (in Chinese). | |
| [78] | 孙侠生, 肖迎春. 飞机结构健康监测技术的机遇与挑战[J]. 航空学报, 2014, 35(12): 3199-3212. |
| SUN X S, XIAO Y C. Opportunities and challenges of aircraft structural health monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3199-3212 (in Chinese). | |
| [79] | LI C, MAHADEVAN S, LING Y, et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal, 2017, 55(3): 930-941. |
| [80] | LEE D, KIM N, KLM M. Dynamic Bayesian network for fatigue-crack-related risk assessment of aerospace bolts[J]. Journal of Aerospace Information Systems, 2022, 19(6): 437-446. |
| [81] | 杨博文, 霍军周, 张伟, 等.服役结构超前载荷实时预测方法的研究[J]. 东北大学学报(自然科学版), 2022, 43(4): 541-550. |
| YANG B W, HUO J Z, ZHANG W, et al. Research on real-time overload prediction method of in-service structures[J]. Journal of Northeastern University (Natural Science), 2022, 43(4): 541-550 (in Chinese). | |
| [82] | 张学薇, 汪振兴, 吴堂珍, 等. 带划痕缺陷的碳纤维增强树脂复合材料疲劳寿命研究[J]. 直升机技术, 2023(1): 41-46, 61. |
| ZHANG X W, WANG Z X, WU T Z, et al. Fatigue life research on carbon fiber enforced resin composites with notch defects[J]. Helicopter Technique, 2023(1): 41-46, 61 (in Chinese). | |
| [83] | 何宇廷, 高潮, 张腾, 等. 飞机结构疲劳/耐久性安全寿命延寿方法[J]. 空军工程大学学报(自然科学版), 2015, 16(6): 1-6. |
| HE Y T, GAO C, ZHANG T, et al. The method of fatigue/durability safe life extension of aircraft structure[J]. Journal of Air Force Engineering University (Natural Science Edition), 2015, 16(6): 1-6 (in Chinese). | |
| [84] | BAKKER O, POPOV A, RATCHEV S. Variation analysis of automated wing box assembly[C]∥CIRP Conference on Manufacturing Systems, 2017. |
| [85] | WANG Q, DOU Y, LI J, et al. An assembly gap control method based on posture alignment of wing panels in aircraft assembly[J]. Assembly Automation, 2017, 37(4):422-433. |
| [86] | 朱永国, 张文博, 刘春锋, 等. 基于SDT和间接平差的中机身自动调姿精度分析[J]. 航空学报, 2017, 38(12): 421301. |
| ZHU Y G, ZHANG W B, LIU C F, et al. Accuracy analysis for automatical adjustment of aircraft fuselage posture based on SDT and indirect adjustment[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 421301 (in Chinese). | |
| [87] | YI Y, YAN Y, LIU X, et al. Digital twin-based smart assembly process design and application framework for complex products and its case study[J]. Journal of Manufacturing Systems, 2021, 58: 94-107. |
| [88] | ZHANG J, QIAO L, HUANG Z, et al. Force constraint-based approach to compute the position and orientation of parts assembled by multiple non-ideal planes[J]. Precision Engineering, 2023, 83(9): 58-68. |
| [89] | MASNAOUI W, DAIDIE A, LACHAUD F, et al. Semi-analytical model development for preliminary study of 3D woven composite/metallic flange bolted assemblies[J]. Composite Structures, 2021, 255: 112906. |
| [90] | ZHOU S, QIU C, LIU Z, et al. A rapid design method of anti-deformation fixture layout for thin-walled structures[J]. Mechanisms and Machine Science, 2018, 55: 721-733. |
| [91] | LU C, HUO D, WANG Z. Optimal tolerance allocation for non-rigid assembly considering the effect of deformation on functional requirement and quality loss cost[J]. International Journal of Advanced Manufacturing Technology, 2023, 125 (1-2): 493-512. |
| [92] | ARISTA R, FALGARONE H. Flexible best fit assembly of large aircraft components. Airbus A350 XWB case study[C]∥Product Lifecycle Management and the Industry of the Future, 2017. |
| [93] | ZHANG W, AN L, WANG Z, et al. Assembly variation analysis of aircraft panels under part-to-part locating scheme[J]. International Journal of Aerospace Engineering, 2019, 2019: 9563596. |
| [94] | ZHANG W, AN L, CHEN Y. Optimisation for clamping force of aircraft composite structure assembly considering form defects and part deformations[J]. Advances in Mechanical Engineering, 2021, 13(4): 155-164. |
| [95] | QU W, TANG W, KE Y. Pre-joining processes optimization method for panel orienting to the clearances suppression of units and the clearances flow among units[J]. International Journal Advanced Manufacturing Technology, 2018, 94(1-4): 1357-1371. |
| [96] | XU G, ZHANG K, CHENG H, et al. An experimental study on mechanical behavior and failure mechanism of sleeved fasteners and conventional bolt for composite interference-fit joints[J]. Composite Structures, 2022, 170: 108537. |
| [97] | QI Z, ZHANG Z, XIAO Y, et al. Analysis of plastic improvement and interference behavior in current-assisted riveting of CFRP laminates[J]. Materials, 2022, 15(5): 1-16. |
| [98] | BERND G, MAIK G, TOBIAS H, et al. Calculation method for the determination of stress concentrations in fibre-reinforced multilayered composites due to metallic interference-fit bolt[J]. Journal of Composite Materials, 2018, 52(18): 2415-2429. |
| [99] | WAAS V, HIDAYAT M, NOEROCHIM L. Finite element simulation of delamination in carbon fiber/epoxy laminate using cohesive zone model: effect of meshing variation[J]. Materials Science Forum, 2019, 964(7): 257-262. |
| [100] | GRAY P, HIGGINS R, MCCARTHY C. Effects of laminate thickness, tapering and missing fasteners on the mechanical behavior of single-lap, multi-bolt, countersunk composite joints[J]. Composite Structures, 2014, 107: 219-230. |
| [101] | CAO Y, ZUO D, ZHAO Y, et al. Experimental investigation on bearing behavior and failure mechanism of double-lap thin-ply composite bolted joints[J]. Composite Structures, 2021, 261: 113565. |
| [102] | ZHOU S, LI J, KANG S, et al. Impact properties analysis of bamboo/glass fiber hybrid composites[J]. Journal of Natural Fibers, 2020(1): 1-10. |
| [103] | DUAN Y, LI Y, ZHANG K, et al. Analysis of bolt-to-laminate interface friction in bolted composite joint with interference-fit[J]. Materials Research Innovations, 2015, 19 (S6): 42-45. |
| [104] | YANG Y, WANG Y, LIU X, et al. The effect of shimming material on flexural behavior for composite joints with assembly gap[J]. Composite Structures, 2019, 209: 375-382. |
| [105] | KIM S, KIM D. Interference-fit effect on improving bearing strength and fatigue life in a pin-loaded woven carbon fiber-reinforced plastic laminate[J]. Journal of Engineering Materials and Technology, 2018, 141(2): 021006. |
| [106] | ZHANG H, YANG D, DING H, et al. Effect of Z-pin insertion angles on low-velocity impact mechanical response and damage mechanism of CFRP laminates with different layups[J]. Composites Part A: Applied Science and Manufacturing, 2021, 150(11): 106593. |
| [107] | ZHANG J, ZHU J, GUO W. A machine learning-based approach to predict the fatigue life of three-dimensional cracked specimens[J]. International Journal of Fatigue, 2022, 159(6): 106808. |
| [108] | YAO L, SUN Y, GUO L, et al. A validation of a modified Paris relation for fatigue delamination growth in unidirectional composite laminates[J]. Composites Part B: Engineering, 2018, 132(1): 97-106. |
| [109] | 李真, 王俊, 邓凡臣, 等. 复合材料机身壁板的强度分析与试验验证[J]. 航空学报, 2020, 41(9): 223688. |
| LI Z, WANG J, DENG F C, et al. Strength analysis and test verification of composite fuselage panels[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 223688 (in Chinese). | |
| [110] | 孙聪. 高超声速飞行器强度技术的现状、挑战与发展趋势[J]. 航空学报, 2022, 43(6): 527590. |
| SUN C. Development status, challenges and trends of strength technology for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 527590 (in Chinese) | |
| [111] | KANG H, LI Z. Assembly research of aero-engine casing involving bolted connection based on rigid-compliant coupling assembly deviation modeling[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(14): 2803-2820. |
| [112] | POLINI W, CORRADO A. Digital twin of composite assembly manufacturing process[J], International Journal of Production Research, 2020, 58(17): 5238-5252. |
| [113] | STRICHER A, CHAMPANEY L, THIEBAUT F, et al. Tolerance analysis of compliant assemblies using FEM simulations and modal description of shape defects[C]∥The 11th Biennial Conference on Engineering Systems Design and Analysis, 2012. |
| [114] | ZHAI Y, QU X, LI R, et al. Effect of forced assembly on bearing performance of single-lap, countersunk composite bolted joints-Part Ⅰ: Experimental investigation[J]. Composite Structures, 2023, 319: 117201. |
| [115] | LI J, GUO W, ZOU P, et al. Multi-stage mechanical behavior and damage mechanism of composite interference-fit joints subject to long-term low-temperature aging[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45(11): 602. |
| [116] | KALLMEYER A, STEPHENS R. A finite element model for predicting time-dependent deformations and damage accumulation in laminated composite bolted joints[J]. Journal of Composite Materials, 1999, 33(9): 794-826. |
| [117] | COMAN C, DAN M. Preload effects on failure mechanisms of hybrid metal-composite bolted joints[J]. Materials Science Forum, 2019, 957: 293-302. |
| [118] | ZHENG Y, ZHANG C, YING T, et al. Tensile properties analysis of CFRP-titanium plate multi-bolt hybrid joints[J]. Chinese Journal of Aeronautics, 2022, 25(3): 464-474. |
| [119] | MOU H, XIE J, LIU Y, et al. Impact test and numerical simulation of typical sub-cargo fuselage section of civil aircraft[J]. Aerospace Science and Technology, 2020, 107(12): 106305. |
| [120] | LAI X, HE X, WANG S, et al. Building a lightweight digital twin of a crane boom for structural safety monitoring based on a multi-fidelity surrogate model[J]. Journal of Mechanical Design, 2022, 144(6): 1-7. |
| [121] | YANG B, WANG Z, YANG Y, et al. Optimum fixture locating layout for sheet metal part by integrating kriging with cuckoo search algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1-4): 327-340. |
| [122] | 祝鹏, 余建波, 郑小云, 等. 机械装配过程的偏差传递网络建模与误差溯源[J]. 浙江大学学报(工学版), 2019, 53(8): 1582-1593. |
| ZHU P, YU J B, ZHENG X Y, et al. Variation propagation network-based modeling and error tracing in mechanical assembling process[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(8): 1582-1593 (in Chinese). | |
| [123] | WU W, SHANG J, CAO Y, et al. Research on applicability of sensitivity table method in optical system alignment[J]. IOP Conference Series: Earth and Environmental Science, 2020, 440(3): 032027. |
| [124] | JING T, TIAN X, LIU X, et al. A multiple alternative processes-based cost-tolerance optimal model for aircraft assembly[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(5-8): 667-677. |
| [125] | GUO F, LIU J, WANG Z, et al. Positioning error guarantee method with two-stage compensation strategy for aircraft flexible assembly tooling[J]. Journal of Manufacturing Systems, 2020, 55(4): 285-301. |
| [126] | 徐定华, 徐映红, 葛美宝. 微分方程和反问题模型与计算[M]. 北京: 科学出版社, 2021: 1-15. |
| XU D H, XU Y H, GE M B. Differential equations and inverse problem models and computation[M]. Beijing: Science Press, 2021: 1-15 (in Chinese). | |
| [127] | 武晨. 专访王向明: “航空业的0.1 mm工程”[J]. 环球飞行, 2013(10): 66-69. |
| WU C. Interview with Wang Xiangming: “0.1 mm project in aviation industry”[J]. Global Flight, 2013(10): 66-69 (in Chinese). | |
| [128] | 杜坤鹏, 郑炜, 李泷杲, 等. 基于实测模型的围框式翼身对接位姿优化[J]. 航空制造技术, 2022, 65(12): 24-33. |
| DU K P, ZHENG W, LI S G, et al. Posture optimization of framed wing-body docking based on measured model[J]. Aeronautical Manufacturing Technology, 2022, 65(12): 24-33 (in Chinese). | |
| [129] | 赵安安, 王洲涛, 汪俊. 基于飞机壁板特征的扫描路径生成方法研究[J]. 南京航空航天大学学报, 2021, 53(3): 344-349. |
| ZHAO A A, WANG Z T, WANG J. Scanning path generation based on aircraft panel features[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(3): 344-349 (in Chinese). | |
| [130] | 薛贵军, 丁宏伟, 阮晓磊. 一种用于生产航空发动机外涵道机匣产品的生产线: CN116214184B[P]. 2023-12-29. |
| XUE G J, DING H W, RUAN X L. A production line for producing the casing of external culvert of aeroengine: CN116214184B[P]. 2023-12-29 (in Chinese). | |
| [131] | 肖庆东, 张学睿, 郭飞燕, 等. 飞机装配质量主动实时控制技术研究现状与发展趋势[J]. 航空制造技术, 2021, 64(20): 22-35. |
| XIAO Q D, ZHANG X R, GUO F Y, et al. Research status and development trends of active real-time control of aircraft assembly quality[J]. Aeronautical Manufacturing Technology, 2021, 64(20): 22-35 (in Chinese). | |
| [132] | 中国电子技术标准研究院. 信息物理系统(CPS)典型应用案例集[M]. 北京: 电子工业出版社, 2019: 107-118. |
| China Electronics Standardization Institute. Typical application case of cyber physical systems (CPS)[M]. Beijing: Electronic Industry Press, 2019: 107-118 (in Chinese). | |
| [133] | 郭飞燕, 刘检华, 邹方, 等. 数字孪生驱动的装配工艺设计现状及关键实现技术研究[J]. 机械工程学报, 2019, 55(17): 110-132. |
| GUO F Y, LIU J H, ZOU F, et al. Research on the state-of-art, connotation and key implementation technology of assembly process planning with digital twin[J]. Journal of Mechanical Engineering, 2019, 55(17): 110-132 (in Chinese). | |
| [134] | 籍永青, 徐颖, 游彦宇. 含分层复合材料层合板拉伸剩余强度研究[J]. 机械制造与自动化, 2021, 50(2): 51-54. |
| JI Y Q, XU Y, YOU Y Y. Research on residual tensile strength of composite laminates with initial delamination[J]. Mechanical Manufacturing and Automation, 2021, 50(2): 51-54 (in Chinese). | |
| [135] | 籍永青, 徐颖, 游彦宇. 复合材料机匣周向安装边模拟件强度与损伤分析[J]. 航空发动机, 2022, 48(1): 54-60. |
| JI Y Q, XU Y, YOU Y Y. Analysis of static strength and damage of circumferential mounting flange simulators in composite casing[J]. Aeroengine, 2022, 48(1): 54-60 (in Chinese). |
| [1] | Xiaoxu HE, Pei LEI, Deng PAN, Yang YANG, Xiankun LI, Zhenbo DENG. Posture and position computing method for aircraft component based on PSO and WSVD [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 427162-427162. |
| [2] | Yingke YANG, Dongsheng LI, Liheng SHEN, Rupeng LI, Yunong ZHAI. Pose and shape adjustment method for CFRP fuselage panel based on multi-robot collaboration [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 428006-428006. |
| [3] | JING Tao, TIAN Xitian. Multi-objective optimization method for aircraft tolerance allocation based on Monte Carlo-adaptive differential evolution algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 425278-425278. |
| [4] | SHI Xunlei, ZHANG Jiwen, LIU Shuntao, CHEN Ken. Correction strategy for hole positions based on Kriging interpolation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 423499-423499. |
| [5] | SHI Zhanghu, HE Xiaoxu, ZENG Debiao, LEI Pei. Error compensation method for mobile robot positioning based on error similarity [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(11): 424105-424105. |
| [6] | CHEN Wenliang, PAN Guowei, WANG Min. High precision positioning method for aircraft fuselage panel based on force/position control [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522403-522403. |
| [7] | PAN Guowei, CHEN Wenliang, WANG Min. A review of parallel kinematic mechanism technology for aircraft assembly [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522572-522572. |
| [8] | HE Xiaoxu, TIAN Wei, ZENG Yuanfan, LIAO Wenhe, XIANG Yong. Robot positioning error and residual error compensation for aircraft assembly [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(4): 420538-420538. |
| [9] | WANG Qian, LI Qing, CHENG Nong, SONG Jingyan. A nonlinear fault tolerant flight control method against structural damage [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(2): 637-647. |
| [10] | HAN Feng, TIAN Wei, LIAO Wenhe, ZHANG Xuan, WANG Lifeng. Normal posture adjustment algorithm for lightweight auto-crawling drilling and riveting system based on parallel mechanism [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(6): 2083-2090. |
| [11] | ZHANG Yu, YAN Yunju, YU Long, WANG Jianqiang. Application of Array Wideband Lamb Wave in Structural Damage Detection [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(3): 780-787. |
| [12] | HU Chunyan, LIU Xinling, CHEN Xing, TAO Chunhu. Failure Analysis of Rotating Shaft in Main Undercarriage [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(2): 461-468. |
| [13] | LIU Shenglan, LUO Zhiguang, TAN Gaoshan, YE Nan, ZHANG Liyan. 3D Measurement and Quality Evaluation for Complex Aircraft Assemblies [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(2): 409-418. |
| [14] | JIN Jiangyan, HUANG Xiang, LU Hu, LI Shuanggao. Research on Mapping Mechanism from Product Design to Tooling Concept Design for Aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(12): 2330-2337. |
| [15] | QU Weiwei, DONG Huiyue, KE Yinglin. Pose Accuracy Compensation Technology in Robot-aided Aircraft Assembly Drilling Process [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(10): 1951-1960. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

