Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (17): 530069.doi: 10.7527/S1000-6893.2024.30069
• Reviews • Previous Articles Next Articles
Wenqing YANG1,2(), Yueyang GUO1, Yuanbo DONG1, Dong XUE1,2, Jianlin XUAN1,2
Received:
2024-01-02
Revised:
2024-01-24
Accepted:
2024-03-18
Online:
2024-09-15
Published:
2024-03-19
Contact:
Wenqing YANG
E-mail:yangwenqing@nwpu.edu.cn
Supported by:
CLC Number:
Wenqing YANG, Yueyang GUO, Yuanbo DONG, Dong XUE, Jianlin XUAN. Research progress on fluid structure interaction of bionic flexible flapping wing UAV[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530069.
1 | SHAHZAD A, TIAN F B, YOUNG J, et al. Effects of flexibility on the hovering performance of flapping wings with different shapes and aspect ratios[J]. Journal of Fluids and Structures, 2018, 81: 69-96. |
2 | SHAHZAD A, TIAN F B, YOUNG J, et al. Effects of hawkmoth-like flexibility on the aerodynamic performance of flapping wings with different shapes and aspect ratios[J]. Physics of Fluids, 2018, 30(9): 091902. |
3 | PINES D J, BOHORQUEZ F. Challenges facing future micro-air-vehicle development[J]. Journal of Aircraft, 2006, 43(2): 290-305. |
4 | CHEN L, ZHANG Y L, ZHOU C, et al. Aerodynamic mechanisms in bio-inspired micro air vehicles: A review in the light of novel compound layouts[J]. IET Cyber-Systems and Robotics, 2019, 1(1): 2-12. |
5 | PRAPAMONTHON P, YIN B, YANG G W, et al. Recent progress in flexibility effects on wing aerodynamics and acoustics[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(2): 208-244. |
6 | KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle[C]∥Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
7 | MARTIN G. eMotion butterflies[EB/OL]. (2018-11-14) [2023-12-14]. . |
8 | 吕扬. 西工大“云鸮”无人机创吉尼斯世界纪录[N]. 陕西日报, 2022-12-19(6). |
LYU Y. Northwestern Polytechnical University’s ‘Yun-xiao’ flapping-wing drone sets Guinness World Record [N]. Shaanxi Daily, 2022-12-19(6) (in Chinese). | |
9 | 叶正寅, 王刚, 张伟伟. 流固耦合力学基础及其应用[M]. 2版. 哈尔滨: 哈尔滨工业大学出版社, 2016. |
YE Z Y, WANG G, ZHANG W W. Fundamentals of fluid-structure coupling and its application[M]. 2nd ed. Harbin: Harbin Institute of Technology Press, 2016 (in Chinese). | |
10 | HO T T T, LEE H, KWON Y. Analysis of intrinsic variability in phase-change memory switching originating from stochastic nucleation using fully coupled electrothermal and phase-field models[J]. ACS Applied Electronic Materials, 2023, 5(1): 281-290. |
11 | ZHAN C, ZHU L Y, ZHANG Y X, et al. A fully coupled model of multi-chip press-pack IGBT for thermo-mechanical stress distribution prediction[J]. IEEE Transactions on Industry Applications, 2022, 58(3): 3852-3862. |
12 | HONG G, KANEKO S, MITSUME N, et al. Robust fluid-structure interaction analysis for parametric study of flapping motion[J]. Finite Elements in Analysis and Design, 2021, 183-184: 103494. |
13 | HAIDER N, SHAHZAD A, QADRI M N M, et al. Aerodynamic analysis of hummingbird-like hovering flight[J]. Bioinspiration & Biomimetics, 2021, 16(6): 066018. |
14 | STEIN K, TEZDUYAR T, BENNEY R. Mesh moving techniques for fluid-structure interactions with large displacements[J]. Journal of Applied Mechanics, 2003, 70(1): 58-63. |
15 | NAKATA T, LIU H. A fluid-structure interaction model of insect flight with flexible wings[J]. Journal of Computational Physics, 2012, 231(4): 1822-1847. |
16 | NAKATA T, LIU H. Aerodynamic performance of a hovering hawkmoth with flexible wings: A computational approach[J]. Proceedings Biological Sciences, 2012, 279(1729): 722-731. |
17 | WICK T. Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity[J]. Computational Mechanics, 2014, 53(1): 29-43. |
18 | GRIFFITH B E, PATANKAR N A. Immersed methods for fluid-structure interaction[J]. Annual Review of Fluid Mechanics, 2020, 52: 421-448. |
19 | MITTAL R, IACCARINO G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261. |
20 | PESKIN C S. The immersed boundary method[J]. Acta Numerica, 2002, 11: 479-517. |
21 | HUANG W X, TIAN F B. Recent trends and progress in the immersed boundary method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(23-24): 7617-7636. |
22 | ZENG Y H, WANG Y, YANG D G, et al. Immersed boundary methods for simulations of biological flows in swimming and flying bio-locomotion: A review[J]. Applied Sciences, 2023, 13(7): 4208. |
23 | XU L C, TIAN F B, YOUNG J, et al. A novel geometry-adaptive Cartesian grid based immersed boundary–lattice Boltzmann method for fluid-structure interactions at moderate and high Reynolds numbers[J]. Journal of Computational Physics, 2018, 375: 22-56. |
24 | HU Z, DENG X Y. Aerodynamic interaction between forewing and hindwing of a hovering dragonfly[J]. Acta Mechanica Sinica, 2014, 30(6): 787-799. |
25 | WANG L, TIAN F B, LIU H. Numerical study of three-dimensional flapping wings hovering in ultra-low-density atmosphere[J]. Physics of Fluids, 2022, 34(4): 041903. |
26 | BOMPHREY R J, NAKATA T, PHILLIPS N, et al. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight[J]. Nature, 2017, 544: 92-95. |
27 | LE T Q, TRUONG T V, PARK S H, et al. Improvement of the aerodynamic performance by wing flexibility and elytra: Hind wing interaction of a beetle during forward flight[J]. Journal of the Royal Society, Interface, 2013, 10(85): 20130312. |
28 | VAN TRUONG T, LE T Q, BYUN D, et al. Flexible wing kinematics of a free-flying beetle (rhinoceros beetle trypoxylus dichotomus)[J]. Journal of Bionic Engineering, 2012, 9(2): 177-184. |
29 | MENZER A, REN Y, GUO J C, et al. Wing kinematics and unsteady aerodynamics of a hummingbird pure yawing maneuver[J]. Biomimetics, 2022, 7(3): 115. |
30 | KOEHLER C, LIANG Z X, GASTON Z, et al. 3D reconstruction and analysis of wing deformation in free-flying dragonflies[J]. The Journal of Experimental Biology, 2012, 215(Pt 17): 3018-3027. |
31 | ANDERSON JR J D. Fundamentals of aerodynamics [M]. New York: Tata McGraw-Hill Education, 2010. |
32 | SHYY W, AONO H, KANG C K, et al. An introduction to flapping wing aerodynamics[M]. Cambridge: Cambridge University Press, 2013. |
33 | SHYY W, AONO H, CHIMAKURTHI S K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2010, 46(7): 284-327. |
34 | HA N S, TRUONG Q T, GOO N S, et al. Relationship between wingbeat frequency and resonant frequency of the wing in insects[J]. Bioinspiration & Biomimetics, 2013, 8(4): 046008. |
35 | YIN B, LUO H X. Effect of wing inertia on hovering performance of flexible flapping wings[J]. Physics of Fluids, 2010, 22(11): 111902-111902-10. |
36 | COMBES S A, DANIEL T L. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta[J]. Journal of Experimental Biology, 2003, 206(17): 2999-3006. |
37 | HEATHCOTE S, GURSUL I. Flexible flapping airfoil propulsion at low Reynolds numbers[J]. AIAA Journal, 2007, 45(5): 1066-1079. |
38 | VANELLA M, FITZGERALD T, PREIDIKMAN S, et al. Influence of flexibility on the aerodynamic performance of a hovering wing[J]. The Journal of Experimental Biology, 2009, 212(Pt 1): 95-105. |
39 | OLIVIER M, DUMAS G. A parametric investigation of the propulsion of 2D chordwise-flexible flapping wings at low Reynolds number using numerical simulations[J]. Journal of Fluids and Structures, 2016, 63: 210-237. |
40 | ISHIHARA D. Role of fluid-structure interaction in generating the characteristic tip path of a flapping flexible wing[J]. Physical Review E, 2018, 98(3): 032411. |
41 | ISHIHARA D. Computational approach for the fluid-structure interaction design of insect-inspired micro flapping wings[J]. Fluids, 2022, 7(1): 26. |
42 | TAHA H E, KIANI M, HEDRICK T L, et al. Vibrational control: A hidden stabilization mechanism in insect flight[J]. Science Robotics, 2020, 5(46): eabb1502. |
43 | KARÁSEK M. Good vibrations for flapping-wing flyers[J]. Science Robotics, 2020, 5(46): eabe4544. |
44 | SANE S P, DIEUDONNÉ A, WILLIS M A, et al. Antennal mechanosensors mediate flight control in moths[J]. Science, 2007, 315(5813): 863-866. |
45 | MASOUD H, ALEXEEV A. Resonance of flexible flapping wings at low Reynolds number[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 81(5 Pt 2): 056304. |
46 | DUDLEY R. The evolutionary physiology of animal flight: Paleobiological and present perspectives[J]. Annual Review of Physiology, 2000, 62: 135-155. |
47 | HA N S, TRUONG Q T, GOO N S, et al. Relationship between wingbeat frequency and resonant frequency of the wing in insects[J]. Bioinspiration & Biomimetics, 2013, 8(4): 046008. |
48 | OZAKI T, HAMAGUCHI K. Bioinspired flapping-wing robot with direct-driven piezoelectric actuation and its takeoff demonstration[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4217-4224. |
49 | THIRIA B, GODOY-DIANA R. How wing compliance drives the efficiency of self-propelled flapping flyers[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(1 Pt 2): 015303. |
50 | RAMANANARIVO S, GODOY-DIANA R, THIRIA B. Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 5964-5969. |
51 | ZHANG J, LIU N S, LU X Y. Locomotion of a passively flapping flat plate[J]. Journal of Fluid Mechanics, 2010, 659: 43-68. |
52 | SPAGNOLIE S E, MORET L, SHELLEY M J, et al. Surprising behaviors in flapping locomotion with passive pitching[J]. Physics of Fluids, 2010, 22(4): 41903-41903-20 . |
53 | CHEN J S, CHEN J Y, CHOU Y F. On the natural frequencies and mode shapes of dragonfly wings[J]. Journal of Sound Vibration, 2008, 313(3-5): 643-654. |
54 | GUO Y Y, YANG W Q, DONG Y B, et al. Numerical investigation of an insect-scale flexible wing with a small amplitude flapping kinematics[J]. Physics of Fluids, 2022, 34(8): 081903. |
55 | GUO Y Y, YANG W Q, DONG Y B, et al. Resonance mechanism of flapping wing based on fluid structure interaction simulation[J]. Chinese Journal of Aeronautics, 2024, 37(5): 243-262. |
56 | CHO H, GONG D, LEE N, et al. Combined co-rotational beam/shell elements for fluid-structure interaction analysis of insect-like flapping wing[J]. Nonlinear Dynamics, 2019, 97(1): 203-224. |
57 | TAY W B. Effect of different types of wing-wing interactions in flapping MAVs[J]. Journal of Bionic Engineering, 2017, 14(1): 60-74. |
58 | 杨文青, 宋笔锋, 宋文萍, 等. 仿生微型扑翼飞行器中的空气动力学问题研究进展与挑战[J]. 实验流体力学, 2015, 29(3): 1-10. |
YANG W Q, SONG B F, SONG W P, et al. The progress and challenges of aerodynamics in the bionic flapping-wing micro air vehicle[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 1-10 (in Chinese). | |
59 | TAY W B, DE BAAR J H S, PERCIN M, et al. Numerical simulation of a flapping micro aerial vehicle through wing deformation capture[J]. AIAA Journal, 2018, 56(8): 3257-3270. |
60 | PHAN H V, AURECIANUS S, KANG T, et al. KUBeetle-S: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism[J]. International Journal of Micro Air Vehicles, 2019, 11: 175682931986137. |
61 | PHAN H V, KANG T, PARK H C. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control[J]. Bioinspiration & Biomimetics, 2017, 12(3): 036006. |
62 | LEE J, YOON S H, KIM C. Experimental surrogate-based design optimization of wing geometry and structure for flapping wing micro air vehicles [J]. Aerospace Science and Technology, 2022, 123: 107451. |
63 | YOON S H, CHO H, LEE J, et al. Effects of camber angle on aerodynamic performance of flapping-wing micro air vehicle[J]. Journal of Fluids and Structures, 2020, 97: 103101. |
64 | 谢辉, 宋文萍, 宋笔锋. 基于CFD方法对微型扑翼翼型设计的研究[J]. 空气动力学学报, 2009, 27(2): 227-233. |
XIE H, SONG W P, SONG B F. Airfoil design of a micro-flapping wing based on CFD[J]. Acta Aerodynamica Sinica, 2009, 27(2): 227-233 (in Chinese). | |
65 | YANG W Q, SONG B F, WANG L G, et al. Dynamic fluid-structure coupling method of flexible flapping wing for MAV[J]. Journal of Aerospace Engineering, 2015, 28(6): 04015006. |
66 | 陈利丽, 宋笔锋, 宋文萍, 等. 基于结构动力学的平板扑翼气动弹性方法研究[J]. 空气动力学学报, 2013, 31(2): 175-180. |
CHEN L L, SONG B F, SONG W P, et al. Dynamic fluid-structure coupling research for micro flapping wing[J]. Acta Aerodynamica Sinica, 2013, 31(2): 175-180 (in Chinese). | |
67 | 薛栋. 结构参数和机体运动对扑翼性能的影响研究[D]. 西安: 西北工业大学, 2018. |
XUE D. The influence of structural parameters and body movement on the performance of flapping wing[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
68 | 杨小武. 基于实测变形的扑动翼气动力与惯性力计算及解耦方法研究 [D]. 西安: 西北工业大学, 2022. |
YANG X. Calculation and decoupling of aerodynamic force and inertial force of flapping wing based on measured deformation [D]. Xi’an: Northwestern Polytechnical University, 2022 (in Chinese). | |
69 | YANG X W, SONG B F, YANG W Q, et al. Study of aerodynamic and inertial forces of a dovelike flapping-wing MAV by combining experimental and numerical methods[J]. Chinese Journal of Aeronautics, 2022, 35(6): 63-76. |
70 | 朱志超. 面向高原环境的大型仿生扑动翼的设计方法研究 [D]. 西安: 西北工业大学, 2023. |
ZHU Z. A study on the design method of large bionic flapping wing for plateau environment [D]. Xi’an: Northwestern Polytechnical University, 2023 (in Chinese). | |
71 | CHOI J S, PARK G J. Multidisciplinary design optimization of the flapping wing system for forward flight[J]. International Journal of Micro Air Vehicles, 2017, 9(2): 93-110. |
72 | YANG L-J, FENG A-L, LEE H-C, et al. The three-dimensional flow simulation of a flapping wing [J]. Journal of Marine Science and Technology, 2018, 26(3): 2. |
73 | FAIRUZ Z M, ABDULLAH M Z, ZUBAIR M, et al. Effect of wing deformation on the aerodynamic performance of flapping wings: Fluid-structure interaction approach[J]. Journal of Aerospace Engineering, 2016, 29(4): 04016006. |
74 | CHIMAKURTHI S K, REUSS S, TOOLEY M, et al. ANSYS workbench system coupling: A state-of-the-art computational framework for analyzing multiphysics problems[J]. Engineering with Computers, 2018, 34(2): 385-411. |
75 | HEATHCOTE S, WANG Z J, GURSUL I. Effect of spanwise flexibility on flapping wing propulsion[C]∥36th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2006. |
76 | AONO H, CHIMAKURTHI S K, WU P, et al. A computational and experimental studies of flexible wing aerodynamics[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
77 | DAI H, LUO H X, DOYLE J F. Dynamic pitching of an elastic rectangular wing in hovering motion[J]. Journal of Fluid Mechanics, 2012, 693: 473-499. |
78 | WANG L, TIAN F B. Numerical study of sound generation by three-dimensional flexible flapping wings during hovering flight[J]. Journal of Fluids and Structures, 2020, 99: 103165. |
79 | KAWAKAMI K, KANEKO S, HONG G, et al. Fluid-structure interaction analysis of flexible flapping wing in the Martian environment[J]. Acta Astronautica, 2022, 193: 138-151. |
80 | NOH W F. CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code[R]. Livermore: Lawrence Radiation Lab., University of California, 1963. |
81 | HAMAMOTO M, OHTA Y, HARA K, et al. A fundamental study of wing actuation for a 6-in-wingspan flapping microaerial vehicle[J]. IEEE Transactions on Robotics, 2010, 26(2): 244-255. |
[1] | LI Yingkun, HAN Junli, CHEN Xiong, ZHOU Changsheng, GONG Lunkun. Numerical simulation of the ignition transient of dual pulse motor based on multi-physics coupling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(4): 120409-120409. |
[2] | AN Weigang, LIANG Shengyun, CHEN Dianyu. Local Dynamic Data Exchange in Fluid Structure Interaction Analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(3): 541-546. |
[3] | JIAO Zong xia;HUA Qing;YU Kai . FREQUENCY DOMAIN ANALYSIS OF VIBRATIONS IN LIQUID FILLED PIPING SYSTEMS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1999, 20(4): 29-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341