Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (19): 228337-228337.doi: 10.7527/S1000-6893.2023.28337
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Zhenyu MA(), Xiaolong DENG, Xixiang YANG, Bingjie ZHU
Received:
2022-11-30
Revised:
2023-02-14
Accepted:
2023-04-07
Online:
2023-10-15
Published:
2023-04-07
Contact:
Zhenyu MA
E-mail:mazhenyu@nudt.edu.cn
Supported by:
CLC Number:
Zhenyu MA, Xiaolong DENG, Xixiang YANG, Bingjie ZHU. Thermal⁃structure coupling characteristics of flexible envelopes for stratospheric airships at float conditions[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 228337-228337.
1 | DAI Q M, FANG X D. A simple model to predict solar radiation under clear sky conditions[J]. Advances in Space Research, 2014, 53(8): 1239-1245. |
2 | 戴秋敏. 浮空器热环境与热特性研究[D]. 南京: 南京航空航天大学, 2014. |
DAI Q M. Research on the thermal environment and thermal characteristics for aerostats[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese). | |
3 | 张衍垒, 李兆杰, 王旭巍, 等. 平流层飞艇表面太阳辐射量分布的分析研究[J]. 太阳能学报, 2020, 41(12): 110-116. |
ZHANG Y L, LI Z J, WANG X W, et al. Study on distribution of solar radiation distribution on stratospheric airship surface[J]. Acta Energiae Solaris Sinica, 2020, 41(12): 110-116 (in Chinese). | |
4 | 张敏. 平流层飞艇温度及红外辐射特性研究[D]. 南京: 南京理工大学, 2016. |
ZHANG M. Temperature and infrared radiation characteristics of approaching spacecrafts[D]. Nanjing: Nanjing University of Science and Technology, 2016 (in Chinese). | |
5 | ZHENG W, ZHANG X Y, MA R, et al. A simplified thermal model and comparison analysis for a stratospheric lighter-than-air vehicle[J]. Journal of Heat Transfer, 2018, 140(2): 022801. |
6 | 李敏, 宁辉, 孟小君, 等. 戈壁地区浮空器的辐射热环境模型[J]. 现代应用物理, 2019, 10(1): 83-86. |
LI M, NING H, MENG X J, et al. Radiation thermal environment models for aerostats in the Gobi area[J]. Modern Applied Physics, 2019, 10(1): 83-86 (in Chinese). | |
7 | DAI Q M, FANG X D, XU Y. Numerical study of forced convective heat transfer around a spherical aerostat[J]. Advances in Space Research, 2013, 52(12): 2199-2203. |
8 | 钱晓辉. 近空间飞艇热特性与环境控制研究[D]. 南京: 南京航空航天大学, 2018. |
QIAN X H. Research on the thermal performance and environment control system for the near-space airship[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
9 | 裴后举, 蒋彦龙, 施红, 等. 基于M-L湍流模型的浮空器强迫对流换热[J]. 化工学报, 2020, 71(S1): 136-141. |
PEI H J, JIANG Y L, SHI H, et al. Forced convective heat transfer around spherical aerostat based on M-L transition model[J]. CIESC Journal, 2020, 71(S1): 136-141 (in Chinese). | |
10 | 刘东旭, 樊彦斌, 马云鹏, 等. 氦气渗透对高空长航时浮空器驻空能力影响[J]. 宇航学报, 2010, 31(11): 2477-2482. |
LIU D X, FAN Y B, MA Y P, et al. Effect of helium permeability on working endurance high altitude long duration LTA vehicle[J]. Journal of Astronautics, 2010, 31(11): 2477-2482 (in Chinese). | |
11 | WANG Y W, YANG C X. A comprehensive numerical model examining the thermal performance of airships[J]. Advances in Space Research, 2011, 48(9): 1515-1522. |
12 | LI D F, XIA X L, SUN C. Experimental investigation of transient thermal behavior of an airship under different solar radiation and airflow conditions[J]. Advances in Space Research, 2014, 53(5): 862-869. |
13 | LIU Q, YANG Y C, CUI Y X, et al. Thermal performance of stratospheric airship with photovoltaic array[J]. Advances in Space Research, 2017, 59(6): 1486-1501. |
14 | ALAM M I, PANT R S. A multi-node model for transient heat transfer analysis of stratospheric airships[J]. Advances in Space Research, 2017, 59(12): 3023-3035. |
15 | XING D M, DAI Q M, LIU C L. Thermal characteristics and output power performances analysis of solar powered stratospheric airships[J]. Applied Thermal Engineering, 2017, 123: 770-781. |
16 | KAYHAN Ö. A thermal model to investigate the power output of solar array for stratospheric balloons in real environment[J]. Applied Thermal Engineering, 2018, 139: 113-120. |
17 | 程晨. 平流层浮空器瞬态热模型及热特性研究[D]. 上海: 上海交通大学, 2019. |
CHENG C. Transient thermal model and thermal characteristics analysis of stratospheric airships[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese). | |
18 | 耿珊珊. 某型海上气象监测艇热力学性能研究[D]. 镇江: 江苏科技大学, 2020. |
GENG S S. Thermal characteristics of marine meteorological monitoring airship[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020 (in Chinese). | |
19 | 方贤德, 王伟志, 李小建. 平流层飞艇热仿真初步探讨[J]. 航天返回与遥感, 2007, 28(2): 5-9. |
FANG X D, WANG W Z, LI X J. A study of thermal simulation of stratospheric airships[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(2): 5-9 (in Chinese). | |
20 | STEFAN K. Thermal effects on a high altitude airship[C]∥ Proceedings of the 5th Lighter-Than Air Conference. Reston: AIAA, 1983. |
21 | 李德富. 平流层浮空器的热特性及其动力学效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. |
LI D F. Thermal behavior and its dynamic effects on stratospheric aerostats[D]. Harbin: Harbin Institute of Technology, 2011 (in Chinese). | |
22 | DAI Q M, CAO L, ZHANG G G, et al. Thermal performance analysis of solar array for solar powered stratospheric airship[J]. Applied Thermal Engineering, 2020, 171: 115077. |
23 | LV M Y, YAO Z B, ZHANG L C, et al. Effects of solar array on the thermal performance of stratospheric airship[J]. Applied Thermal Engineering, 2017, 124: 22-33. |
24 | SUN K W, YANG Q Z, YANG Y, et al. Thermal characteristics of multilayer insulation materials for flexible thin-film solar cell array of stratospheric airship[J]. Advances in Materials Science and Engineering, 2014, 2014: 1-8. |
25 | DU H F, LI J, ZHU W Y, et al. Thermal performance analysis and comparison of stratospheric airships with rotatable and fixed photovoltaic array[J]. Energy Conversion and Management, 2018, 158: 373-386. |
26 | MENG J H, LIU S Y, YAO Z B, et al. Optimization design of a thermal protection structure for the solar array of stratospheric airships[J]. Renewable Energy, 2019, 133: 593-605. |
27 | LIU Y, DU H F, XU Z Y, et al. Mission-based optimization of insulation layer for the solar array on the stratospheric airship[J]. Renewable Energy, 2022, 191: 318-329. |
28 | SHI H, CHEN J M, GENG S S, et al. Envelope radiation characteristics of stratospheric airship[J]. Advances in Space Research, 2021, 68(3): 1582-1590. |
29 | SHI H, CHEN J M, HU L C, et al. Multi-parameter sensitivity analysis on thermal characteristics of stratospheric airship[J]. Case Studies in Thermal Engineering, 2021, 25: 100902. |
30 | CHEN W J, ZHANG D X, DUAN D P, et al. Equilibrium configuration analysis of non-rigid airship subjected to weight and buoyancy[C]∥ Proceedings of the 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2011. |
31 | 汪逸然. 系绳增强充气结构承载性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
WANG Y R. Bearing capacity analysis of inflatable structures with enhancing tethers[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). | |
32 | 朱利君. 充气囊体结构变形及应力的数值模拟分析研究[D]. 上海: 上海交通大学, 2014. |
ZHU L J. Numerical simulation analysis on the deformation and the stress of inflated membrane structure[D]. Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese). | |
33 | 沈克利. 飞艇充气囊体变形规律的探究[D]. 上海: 上海交通大学, 2015. |
SHEN K L. Deformation research of inflatable envelope of airship[D]. Shanghai: Shanghai Jiao Tong University, 2015 (in Chinese). | |
34 | 陈政. 飞艇索膜结构的变形分析与优化设计[D]. 上海: 上海交通大学, 2020. |
CHEN Z. Deformation analysis and optimization design of the airship cable-membrane structure[D]. Shanghai: Shanghai Jiao Tong University, 2020 (in Chinese). | |
35 | GAO W N, ZHANG J, MA T, et al. A novel inflatable rings supported design and buoyancy-weight balance deformation analysis of stratosphere airships[J]. Chinese Journal of Aeronautics, 2022, 35(1): 340-347. |
36 | 罗俊清. 临近空间软式飞艇结构特性分析[D]. 北京: 中国科学院大学,2014. |
LUO J Q. Structural characteristics analysis of near-space flexible airship[D].Beijing: University of Chinese Academy of Sciences, 2014 (in Chinese). | |
37 | 王卿宇. 临近空间软式飞艇结构特性分析[D]. 北京: 中国科学院大学, 2017. |
WANG Q Y. Structural characteristics analysis of near-space flexible airship[D].Beijing: University of Chinese Academy of Sciences, 2017 (in Chinese). | |
38 | HU Y, CHEN W J, CHEN Y F, et al. Modal behaviors and influencing factors analysis of inflated membrane structures[J]. Engineering Structures, 2017, 132: 413-427. |
39 | 高海健. 大型平流层平台柔性飞艇结构分析理论与特性研究[D]. 上海: 上海交通大学, 2010. |
GAO H J. Study on structural analysis theory and characteristics of large stratospheric platform flexible airship[D].Shanghai: Shanghai Jiao Tong University, 2010 (in Chinese). | |
40 | 高海健, 陈务军, 付功义, 等. 考虑气压效应平流层平台柔性飞艇变形分析方法与特征研究[J]. 应用力学学报, 2012, 29(4): 374-379, 483. |
GAO H J, CHEN W J, FU G Y, et al. Deformation analysis method and performance evaluation for flexible airship of stratospheric platform considering pressure effects[J]. Chinese Journal of Applied Mechanics, 2012, 29(4): 374-379, 483 (in Chinese). | |
41 | 刘龙斌, 吕明云, 肖厚地, 等. 基于压差梯度的平流层飞艇艇囊应力计算和仿真[J]. 北京航空航天大学学报, 2014, 40(10): 1386-1391. |
LIU L B, LÜ M Y, XIAO H D, et al. Calculation and simulation of stratospheric airship capsule stress considering the pressure gradient[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(10): 1386-1391 (in Chinese). | |
42 | 陈宇峰. 大型柔性飞艇主气囊结构分析与模型试验验证[D]. 上海: 上海交通大学, 2015. |
CHEN Y F. Structural analysis and model test verification of main airbag of large flexible airship[D].Shanghai: Shanghai Jiao Tong University, 2015 (in Chinese). | |
43 | ZHAO S, LIU D X, ZHAO D, et al. Change rules of a stratospheric airship’s envelope shape during ascent process[J]. Chinese Journal of Aeronautics, 2017, 30(2): 752-758. |
44 | 石泰百. 囊体材料与囊体结构强度模型及试验研究[D]. 上海: 上海交通大学, 2019. |
SHI T B. Experimental study and strength model for envelope materials and structures[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese). | |
45 | 李意. 半柔性结构飞艇模型静力学试验与分析[D]. 上海: 上海交通大学, 2019. |
LI Y. Statics experiments and analysis of semi-flexible structure airship model[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese). | |
46 | XIE W C, WANG X L, DUAN D P, et al. Finite element simulation of the microstructure of stratospheric airship envelopes[J]. AIAA Journal, 2020, 58(8): 3690-3699. |
47 | ROH J H, LEE H G, LEE I. Thermoelastic behaviors of fabric membrane structures[J]. Advanced Composite Materials, 2008, 17(4): 319-332. |
48 | MENG J H, CAO S, QU Z P, et al. Thermoelasticity of a fabric membrane composite for the stratospheric airship envelope based on multiscale models[J]. Applied Composite Materials, 2017, 24(1): 209-220. |
49 | LI X J, FANG X D, DAI Q M, et al. Modeling and analysis of floating performances of stratospheric semi-rigid airships[J]. Advances in Space Research, 2012, 50(7): 881-890. |
50 | 吉庆祥. 软式飞艇囊体结构弯皱特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
JI Q X. Bending-wrinkling analysis of nonrigid airship envelope[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese). | |
51 | 刘猛雄. 薄膜结构的屈曲与接触行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
LIU M X. Study on buckling and contact behaviours of the membrane structure[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). | |
52 | 邢道明. 平流层浮空器热特性及其热力学效应数值仿真研究[D]. 南京: 南京理工大学, 2018. |
XING D M. Numerical study on the thermal characteristic and thermal-mechanical effect of stratospheric aerostat[D]. Nanjing: Nanjing University of Science and Technology, 2018 (in Chinese). | |
53 | WEI J Z, MA R Q, HOU X, et al. Analysis of the thermodynamical property of super-pressure balloons[J]. Acta Mechanica, 2019, 230(4): 1355-1366. |
54 | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019. |
TAO W Q. Heat transfer[M]. 5th ed. Beijing: Higher Education Press, 2019 (in Chinese). | |
55 | 麻震宇, 杨希祥, 侯中喜. 平流层浮空器驻空热力学特性[M]. 北京: 科学出版社, 2020. |
MA Z Y, YANG X X, HOU Z X. Thermodynamic characteristics of stratospheric aerostat in space[M]. Beijing: Science Press, 2020 (in Chinese). | |
56 | 苗建印, 钟奇, 赵啟伟. 航天器热控制技术[M]. 北京: 北京理工大学出版社, 2018. |
MIAO J Y, ZHONG Q, ZHAO Q W. Spacecraft thermal control technology[M]. Beijing: Beijing Insititute of Technology Press, 2018 (in Chinese). | |
57 | HARADA K, EGUCHI K, SANO M, et al. Experimental study of thermal modeling for stratospheric platform airship[C]∥ Proceedings of the AIAA’s 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Forum. Reston: AIAA, 2003. |
58 | 王长国. 空间薄膜结构皱曲行为与特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. |
WANG C G. Study on wrinkling behavior and characteristic of space membrane structures[D]. Harbin: Harbin Institute of Technology, 2007 (in Chinese). | |
59 | 张建, 杨庆山, 谭锋. 基于薄壳单元的薄膜结构褶皱分析[J]. 工程力学, 2010, 27(8): 28-34, 39. |
ZHANG J, YANG Q S, TAN F. Analysis of wrinkled membrane structures by thin-shell elements[J]. Engineering Mechanics, 2010, 27(8): 28-34, 39 (in Chinese). | |
60 | 谢军. 充气膜结构的褶皱及振动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. |
XIE J. Wrinkling and vibration studies on inflatable membrane structures[D]. Harbin: Harbin Institute of Technology, 2012 (in Chinese). | |
61 | WONG W, PELLEGRINO S. Wrinkled membranes III: numerical simulations[J]. Journal of Mechanics of Materials and Structures, 2006, 1(1): 63-95. |
62 | 马瑞. 基于稳定理论的剪切薄膜褶皱发展过程及其动力特性研究[D]. 北京: 北京交通大学, 2013. |
MA R. Analysis on development of membrane wrinkles and dynamic characteristics based on stability theory[D]. Beijing: Beijing Jiaotong University, 2013 (in Chinese). | |
63 | 刘启军. 平面薄膜褶皱后力学行为的试验研究及数值分析[D]. 北京: 北京交通大学, 2018. |
LIU Q J. Experimental and numerical analysis of mechanical behavior of flat membranes after wrinkling[D]. Beijing: Beijing Jiaotong University, 2018 (in Chinese). | |
64 | 洪一红. 空间充气展开薄膜结构的动力学行为及褶皱问题研究[D]. 上海: 上海大学, 2019. |
HONG Y H. Research on dynamic behavior and wrinkling pattern of space inflatable membrane structure[D]. Shanghai: Shanghai University, 2019 (in Chinese). | |
65 | 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003. |
WANG X C. Finite element method[M]. Beijing: Tsinghua University Press, 2003 (in Chinese). | |
66 | 白婷. 基于显式有限元的多层气枕式薄膜结构受力及破坏分析[D]. 北京: 北京交通大学, 2017. |
BAI T. Stress and failure analysis on multi-layer membrane cushion structure using explicit finite element method[D]. Beijing: Beijing Jiaotong University, 2017 (in Chinese). | |
67 | 褚浩玥. 考虑褶皱影响的平面张拉薄膜动力特性及其风振响应分析[D]. 北京: 北京交通大学, 2018. |
CHU H Y. Analysis of dynamic properties and wind induced response of tensioned flat membranes with wrinkling deformation[D]. Beijing: Beijing Jiaotong University, 2018 (in Chinese). | |
68 | DENG X W. Clefted equilibrium shapes of superpressure balloon structures[D]. Pasadena, CA: California Institute of Technology, 2012. |
69 | DIABY A, LE VAN A, WIELGOSZ C. Buckling and wrinkling of prestressed membranes[J]. Finite Elements in Analysis and Design, 2006, 42(11): 992-1001. |
70 | KANG S, IM S. Finite element analysis of dynamic response of wrinkling membranes[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 173(1-2): 227-240. |
71 | CONTRI P, SCHREFLER B A. A geometrically nonlinear finite element analysis of wrinkled membrane surfaces by a no-compression material model[J]. Communications in Applied Numerical Methods, 1988, 4(1): 5-15. |
[1] | Siji WANG, Yuwei ZHANG, Kaiming HUANG, Biao LYU, Haifeng ZHAO, Hu WANG, Mingfu LIAO. An optimization method for helicopter power turbine rotor system based on improved particle swarm optimization algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 228608-228608. |
[2] | Laixiao LU, Changguan XU, Jianhua LIU, Meizhen QIN, Yingbo LYU, Yuqin YAN. Influence of initial stress state on bilateral rolling process of thin⁃walled part [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 427415-427415. |
[3] | WU Zhiyuan, YAN Han, WU Linchao, MA Hui, QU Yegao, ZHANG Wenming. Vibration characteristics of rotating cracked-blade-flexible-disk coupling system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625442-625442. |
[4] | LIU Zhihui, NIU Junchuan, JIA Ruihao. Energy flow model for high-frequency vibration of beams in thermal-gradient environment [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 425336-425336. |
[5] | JIN Yulin, LIU Zhiwen, CHEN Yushu. Fault simulation of blade-casing rubbing for dual-rotor system of aero-engines [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 425072-425072. |
[6] | WAN Aoshuang, WANG Zhenming, LI Dinghe. Three-scale analysis of woven composite plates based on third-order shear computational continua method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 226614-226614. |
[7] | ZHANG Ke, YUAN Shenfang, REN Yuanqiang, XU Yuesheng. Shape reconstruction of self-adaptive morphing wings’ fishbone based on inverse finite element method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(8): 223617-223617. |
[8] | SHI Wenze, CHEN Weiwei, LU Chao, CHENG Jinjie, CHEN Yao. Characteristics and factor analyses for electromagnetic ultrasonic detection echoes in high-temperature aluminum alloy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(12): 423854-423854. |
[9] | PENG Yilin, MA Yu'e, ZHAO Yang, ZHU Liang. Shear buckling performance of Al-Li alloy stiffened panels [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(11): 423729-423729. |
[10] | YUAN Weidong, GAO Zhan, LIU Haokang, MIU Guofeng. Topology optimization of composite shell damping structures based on improved optimal criteria method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 223162-223162. |
[11] | LIU Peng, GUO Yazhou, ZHAO Zhenqiang, XING Jun, ZHANG Chao. Meso-scale finite element simulation of compressive failure behavior of two-dimensional triaxially braided composite [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(7): 222865-222865. |
[12] | TIAN Shuo, SHANG Jianqin, GAI Pengtao, CHEN Fulong, ZENG Yuansong. Numerical simulation and deformation prediction of stress peen forming for integrally-stiffened panels [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(10): 422847-422847. |
[13] | CHEN Zhaolin, YANG Zhichun, WANG Yongyan, ZHANG Xinping. A high-frequency shock response analysis method based on energy finite element method and virtual mode synthesis and simulation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(8): 221893-221893. |
[14] | PENG Xiao, SHU Zhan, DU Tao, XU Qiang. Peel simulating and test verification of prepreg based on laying process [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(12): 422246-422246. |
[15] | HE Huan, SONG Dapeng, ZHANG Chenkai, CHEN Guoping. Finite element model of beem considering arbitrary deformation mode of cross-section [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(12): 222228-222228. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 114
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 264
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341