[1] ANDREW A L, ROBERTS S M, SHIPMAN J S. Two-point boundary value problems:Shooting methods[J]. Technometrics, 1975, 17(2):277. [2] HA S N. A nonlinear shooting method for two-point boundary value problems[J]. Computers & MathematicsWith Applications, 2001, 42(10-11):1411-1420. [3] MORRISON D D, RILEY J D, ZANCANARO J F. Multipleshooting method for two-point boundary value problems[J]. Communications of the ACM, 1962, 5(12):613-614. [4] 彭坤, 彭睿, 黄震, 等. 求解最优月球软着陆轨道的隐式打靶法[J]. 航空学报, 2019, 40(7):322641. PENG K, PENGR, HUANG Z, et al. Implicit shooting method to solve optimal Lunar soft landing trajectory[J]. ACTA Acta Aeronautica et Astronautica Sinica, 2019, 40(7):322641. [5] NA T Y. Transforming boundary conditions to initial conditions for ordinary differential equations[J]. SIAM Review, 1967, 9(2):204-210. [6] NA T Y. An initial value method for the solution of a class of nonlinear equations in fluid mechanics[J]. Journal of Basic Engineering, 1970, 92(3):503-508. [7] GOODING R H. A procedure for the solution of Lambert's orbital boundary-value problem[J]. Celestial Mechanics and Dynamical Astronomy, 1990, 48(2):145-165. [8] BATTIN R H. An introduction to the mathematics and methods of astrodynamics, revised edition[M]. Reston:AIAA, 1999. [9] REINHARDT H J. Analysis of approximation methods for differential and integral equations[M]. New York:Springer New York, 1985. [10] DONG L, ALOTAIBI A, MOHIUDDINE S A, et al. Computational methods in engineering:A variety of primal & mixed methods, with global & local interpolations, for well-posed or Ill-posed BCs[J]. Computer Modeling in Engineering and Sciences, 2014, 99(1):1-85. [11] DAI H H, YUE X K, YUAN J P, et al. A time domain collocation method for studying the aeroelasticity of a two dimensional airfoil with a structural nonlinearity[J]. Journal of Computational Physics, 2014, 270:214-237. [12] CHEN Q F, ZHANG Y D, LIAO S Y, et al. Newton-kantorovich/pseudospectral solution to perturbed astrodynamic two-point boundary-value problems[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):485-498. [13] ELGOHARY T A, JUNKINS J L, ATLURI S N. An RBF-collocation algorithm for orbit propagation[C]//AAS/AIAA:Space Flight Mechanics Meeting,2015. [14] BAI X L, JUNKINS J L. Modified Chebyshev-Picard iteration methods for solution of boundary value problems[J]. The Journal of the Astronautical Sciences, 2011, 58(4):615-642. [15] WANG X C, YUE X K, DAI H H, et al. Feedback-accelerated Picard iteration for orbit propagation and lambert's problem[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(10):2442-2451. [16] WANG X, ATLURI S N. A unification of the concepts of the variational iteration, adomian decomposition and picard iteration methods; and a local variational iteration method[J]. Computer Modeling in Engineering & Sciences, 2016, 111(6):567-585. [17] NA T Y. Computational methods in engineering boundary value problems[M]. New York:Academic Press, 1979:70-92. [18] WANG X C, ATLURI S N. A novel class of highly efficient and accurate time-integrators in nonlinear computational mechanics[J]. Computational Mechanics, 2017, 59(5):861-876. [19] 汪雪川. 非线性系统的反馈Picard迭代-配点方法及应用[D]. 西安:西北工业大学, 2017:87-106. WANG X C. Feedback picarditeration-collocation method and the applications on astronautical engineering[D]. Xi'an:Northwestern Polytechnical University, 2017:87-106(in Chinese). [20] 刘林, 胡松杰, 王歆. 航天动力学引论[M]. 南京:南京大学出版社, 2006:21-173. LIU L, HU S J, WANG X. Anintroduction of astrodynamics introduction of astrodynamics[M]. Nanjing:Nanjing University Press, 2006:21-173(in Chinese). [21] 张大力. 近地空间目标高精度轨道预报算法研究[D]. 哈尔滨:哈尔滨工业大学, 2015:23-25. ZHANG D L. Research on high accuracy orbits predictingalgorithm for near-earth target[D]. Harbin:Harbin Institute of Technology, 2015:23-25(in Chinese). [22] 王威, 于志坚. 航天器轨道确定:模型与算法[M]. 北京:国防工业出版社, 2007:155-170. WANG W, YU Z J. Spacecraft orbit determination:Models and algorithms[M]. Beijing:National Defense Industry Press, 2007:155-170(in Chinese). [23] 张斌, 周敬. 基于特征模型的Halo轨道维持控制[J]. 航空学报, 2019, 40(11):323206. ZHANG B, ZHOU J. Characteristic model-based station-keeping control for Halo orbit[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(11):323206(in Chinese). |