[1] |
MORETTI G. Thirty-six years of shock fitting[J]. Computers & Fluids, 2002, 31:719-723.
|
[2] |
HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3):357-393.
|
[3] |
HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes III[M]. Berlin Heidelber:Springer, 1987:231-303.
|
[4] |
SHI J, HU C, SHU C W. A technique of treating negative weights in WENO schemes[J]. Journal of Computational Physics, 2002,175(1):108-127.
|
[5] |
LEVY D, PUPPO G, RUSSO G. On the behavior of the total variation in CWENO methods for conservation laws[J]. Applied Numerical Mathematics, 2000, 33(1):407-414.
|
[6] |
QIU J, SHU C W. On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes[J]. Journal of Computational Physics, 2002, 183(1):187-209.
|
[7] |
WANG Z J, CHEN R F. Optimized weighted essentially nonoscillatory schemes for linear waves with discontinuity[J]. Journal of Computational Physics, 2001, 174(1):381-404.
|
[8] |
宗文刚, 邓小刚, 张涵信. 双重加权实质无波动激波捕捉格式[J]. 空气动力学学报, 2003, 21(2):218-225. ZONG W G, DENG X G, ZHANG H X. Double weighted essentially non-oscillatory shock-capturing schemes[J]. Acta Aerodynamica Sinica, 2003, 21(2):218-225(in Chinese).
|
[9] |
沈孟育, 李海东, 刘秋生. 用解析离散法构造WENO-FCT格式[J]. 空气动力学学报, 1998, 16(1):56-63. SHEN M Y, LI H D, LIU Q S. Analytic discrete WENO-FCT scheme[J]. Acta Aerodynamica Sinica, 1998, 16(1):56-63(in Chinese).
|
[10] |
DENG X G, MAEKAWA H. Compact high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 1997, 130:77-91.
|
[11] |
DENG X G, MAO M. Weighted compact high-order nonlinear schemes for the Euler equations[C]//Computational Fluid Dynamics Conference, 2006.
|
[12] |
ZHONG X L. High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition[J]. Journal of Computational Physics, 1998, 144(2):662-709.
|
[13] |
PRADEEP S R, ZHONG X L. High-order shock-fitting and front-tracking schemes for numerical simulation of shock-disturbance interactions[J]. Journal of Computational Physics, 2010, 229(19):6744-6780.
|
[14] |
ZHONG X L, WANG X W. Direct numerical simulation on the receptivity, instability, andtransition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44(1):527-561.
|
[15] |
周恒, 张涵信. 有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J]. 空气动力学学报, 2017, 35(2):151-155. ZHOU H, ZHANG H X. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. Acta Aerodynamica Sinica, 2017, 35(2):151-155(in Chinese).
|
[16] |
MARCELLO O, RENATO P. Shock-fitting:Classical technique, recent developments, and memoirs of Gino Moretti[M]. Springer, 2017.
|
[17] |
CHUNG K C. A generalized finite-difference method for heat transfer problems of irregular geometries[J]. Numerical Heat Transfer, 1981, 4:345-357.
|
[18] |
BATINA J T. A gridless Euler/Navier-Stokes solution algorithm for complex-aircraft applications:AIAA-1993-0333[R]. Reston, VA:AIAA, 1993.
|
[19] |
RAINALD L, CARLOS S, EUGENIO O, et al. A finite point method for compressible flow[J]. International Journal for Numerical Methods in Engineering, 2002, 53:1765-1779.
|
[20] |
SRIDAR D, BALAKRISHNAN N. An upwind finite difference scheme for meshless solvers[J]. Journal of Computational Physics, 2003, 189:1-29.
|
[21] |
DING H, SHU C, YEO K S. Development of least-square-based two-dimensional finite difference schemes and their application to simulate natural convection in a cavity[J]. Computers & Fluids, 2004, 33:137-154.
|
[22] |
SHU C, DING H, CHEN H Q, et al. An upwind local RBF-DQ method for simulation of inviscid compressible flows[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194:2001-2017.
|
[23] |
TOTA P, WANG Z J. Meshfree Euler solver using local radial basis functions for inviscid compressible flows:AIAA-2007-4581[R]. Reston, VA:AIAA, 2007.
|
[24] |
KATZ A, JAMENSON A. A comparison of various meshless schemes within a unified algorithm:AIAA-2009-0596[R]. Reston, VA:AIAA, 2009.
|
[25] |
SU X R, YAMAMOTO S, NAKAHASHI K. Analysis of a meshless solver for high Reynolds number flow[J]. Journal of Computational Physics, 2013, 72:505-527.
|
[26] |
SUNDAR D S, YEO K S. A high order meshless method with compact support[J]. Journal of Computational Physics, 2014, 272:70-87.
|
[27] |
XUE L L, YU X R, W L. Construction of the high order accurate generalized finite difference schemes for inviscid compressible flows[J]. Computers & Fluids, 2019, 25(2):481-507.
|
[28] |
刘君, 韩芳, 夏冰. 有限差分法中几何守恒律的机理及算法[J]. 空气动力学学报, 2018, 36(6):918-926. LIU J, HAN F, XIA B. Mechanism and algorithm for geometric conservation law in finite difference method[J]. Acta Aerodynamica Sinica, 2018, 36(6):918-926(in Chinese).
|
[29] |
刘君, 韩芳. 有限差分法中的贴体坐标变换[J]. 气体物理, 2019(5):18-29. LIU J, HAN F. Body-fitted coordinate transformation for finite difference method[J]. Physics of Gases, 2019(5):18-29(in Chinese).
|