[1] FLITTIE K, CURTIN B. Pathfinder solar-powered aircraft flight performance:AIAA-1998-4446[R]. Reston, VA:AIAA, 1998. [2] NOLL T, BROWN J, PEREZ-DAVIS M, et al. Investigation of the Helios prototype aircraft mishap report:Mishap Report Voume I[R]. Washington, D.C.:NASA, 2004. [3] 张健, 张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报, 2016, 37(S1):1-7. ZHANG J, ZHANG D H. Essentials of configuration design of HALE solar-powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):1-7(in Chinese). [4] 尹成越, 高普云, 郭健, 等. "微风"(Zephyr7)无人机机翼力学性能分析[J]. 强度与环境, 2012, 39(3):19-25. YIN C Y, GAO P Y, GUO J, et al. Mechanical performance analysis on wing's of Zephyr7 UAV[J]. Structure & Enviroment Engineering, 2012, 39(3):19-25(in Chinese). [5] RAPINETT A. Zephyr:A high altitude long endurance unmanned air vehicle[D]. Guildford:University of Surrey, 2009:1-8. [6] ALBERTSON J, TROUTT T, KEDZIE C. Unsteady aerodynamic forces at low airfoil pitching rates:AIAA-1988-2579[R]. Reston, VA:AIAA, 1988. [7] HELIN H, WALKER J. Interrelated effects of pitch rate and pivot point on airfoil dynamic stall:AIAA-1985-0130[R]. Reston, VA:AIAA, 1985. [8] WALKER J M, HELIN H E, STRICKLAND J H. An experimental investigation of an airfoil undergoing large-amplitude pitching motions[J]. AIAA Journal, 1985, 23(8):1141-1142. [9] SCHRECK S J, FALLER W E, ROBINSON M C. Unsteady separation processes and leading edge vortex precursors:Pitch rate and Reynolds number influences[J]. Journal of Aircraft, 2002, 39(5):868-875. [10] OI M V, ELDREDGE J D, WANG C. High-amplitude pitch of a flat plate:An abstraction of perching and flapping[J]. International Journal of Micro Air Vehicles, 2009, 1(3):203-216. [11] GOPALAKRISHNAN P, TAFTI D K. Effect of rotation kinematics and angle of attack on flapping flight[J]. AIAA Journal, 2009, 47(11):2505-2519. [12] LEKNYS R R, ARJOMANDI M, KELSO R M, et al. Dynamic-and post-stall characteristics of pitching airfoils at extreme conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(6):1171-1185. [13] 高正红. 绕振动机翼非定常气动力迟滞特性的模拟研究[J]. 应用数学和力学, 1999, 20(8):835-846. GAO Z H. Research on the hysteresis properties of unsteady aerodynamics about the oscillating wings[J]. Applied Mathematics and Mechanics, 1999, 20(8):835-846(in Chinese). [14] JUNG Y W, PARK S O. Vortex-shedding characteristics in the wake of an oscillating airfoil at low Reynolds number[J]. Journal of Fluids and Structures, 2005, 20(3):451-464. [15] YU Y, AMANDOLESE X, FAN C, et al. Experimental study and modelling of unsteady aerodynamic forces and moment on flat plate in high amplitude pitch ramp motion[J]. Journal of Fluid Mechanics, 2018, 846:82-120. [16] QIN S, KOOCHESFAHANI M, JABERI F. Large eddy simulations of unsteady flows over a stationary airfoil[J]. Computers & Fluids, 2018, 161:155-170. [17] YU H T, BERNAL L P. Effects of pivot location and reduced pitch rate on pitching rectangular flat plates[J]. AIAA Journal, 2017, 55(3):702-718. [18] EKATERINARIS J A, PLATZER M F. Computational prediction of airfoil dynamic stall[J]. Progress in Aerospace Sciences, 1998, 33(11-12):759-846. [19] 张正秋, 邹正平, 刘火星, 等. 非失速二维振荡叶栅非定常流动数值模拟研究[J]. 空气动力学学报, 2009, 27(2):255-259. ZHANG Z Q, ZOU Z P, LIU H X, et al. A numericalstudy of unstalled two dimentional flow on an oscillating cascade[J]. Acta Aerodynamica Sinica, 2009, 27(2):255-259(in Chinese). [20] 张正秋, 邹正平, 刘火星. 振荡翼型非定常流动数值模拟研究[J]. 燃气涡轮试验与研究, 2009, 22(3):1-8. ZHANG Z Q, ZOU Z P, LIU H X. Numerical study oftwo dimensional flow on an oscillating airfoil[J]. Gas Turbine Experiment and Research, 2009, 22(3):1-8(in Chinese). [21] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605. [22] VISBAL M R. Dynamic stall of a constant-rate pitching airfoil[J]. Journal of Aircraft, 1990, 27(5):400-407. [23] 王科雷, 祝小平, 周洲, 等. 基于转捩模型的低雷诺数翼型优化设计研究[J]. 西北工业大学学报, 2015, 33(4):580-587. WANG K L, ZHU X P, ZHOU Z, et al. Studying optimization design of low Reynolds number airfoil using transition model[J]. Journal of Northwestern Polytechnical University, 2015, 33(4):580-587(in Chinese). [24] YANG Z, IGARASHI H, MARTIN M, et al. An experimental investigation on aerodynamic hysteresis of a low-Reynolds number airfoil:AIAA-2008-0315[R]. Reston, VA:AIAA, 2008. [25] PIZIALI R A. 2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall:NASA-TM-4632[R]. Washington, D.C.:NASA, 1994. [26] MCALISTER K W, PUCCI S L, MCCROSKEY W J, et al. An experimental study of dynamic stall on advanced airfoil section. Volume 2:Pressure and force data:NASA-TM-84245-VOL-2[R]. Washington, D.C.:NASA, 1982. [27] THEODORSEN T.General theory of aerodynamic instability and the mechanism of flutter:NACA-TR-496[R]. Washington, D.C.:NASA, 1949. [28] 叶正寅, 张伟伟, 史爱明. 流固耦合力学基础及其应用[M]. 哈尔滨:哈尔滨工业大学出版社, 2010:73-85. YE Z Y, ZHNAG W W, SHI A M. Fundamentals of fluid-solid coupling mechanics and its application[M]. Harbin:Harbin Institute of Technology Press, 2010:73-85(in Chinese). [29] GENDRICH C P, KOOCHESFAHANI M M, VISBAL M R. Effects of initial acceleration on the flow field development around rapidly pitching airfoils[J]. Journal of Fluids Engineering, 1995, 117(1):45-49. [30] KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. New York:Cambridge University Press, 2009:407-446. |