[1] Fujita H, Takata H. A study of configurations of casing treatment for axial flow compressors[J]. Bulletin of JSME, 1984, 27(230):1675-1681.
[2] Bailey E E. Effect of grooved casing treatment on the flow range capability of a single-stage axial-flow compressor, TM X-2459[R]. Ohio:NASA, 1972.
[3] Shabbir A, Adamczyk J J. Flow mechanism for stall margin improvement due to circumferential casing grooves on axial compressors[J]. Journal of Turbomachinery, 2005, 127(4):708-717.
[4] Lu X G, Chu W L, Zhu J Q, et al. Mechanism of the interaction between casing treatment and tip leakage flow in a subsonic axial compressor, GT2006-90077[R]. Barcelona:ASME, 2006.
[5] Müller M W, Schiffer H-P, Hah C. Effect of circumferential grooves on the aerodynamic performance of an axial single-stage transonic compressor, GT2007-27365[R]. Montreal:ASME, 2007.
[6] Houghton T, Day I. Enhancing the stability of the subsonic compressor using casing grooves[J]. Journal of Turbomachinery, 2011, 133(2):021007-1-021007-11.
[7] Houghton T, Day I. Stability enhancement by casing grooves:the importance of stall inception mechanism and solidity[J]. Journal of Turbomachinery, 2012, 134(2):021003-1-021003-8.
[8] Moore F K, Greitzer E M. A theory of post-stall transients in axial compression systems:Part I-Development of equations[J]. ASME Journal of Turbomachinery, 1986, 108(1):68-76.
[9] McDougall N M, Cumpsty N A, Hynes T P. Stall inception in axial compressors[J]. ASME Journal of Turbomachinery, 1990, 112(1):116-123.
[10] Day I J. Stall inception in axial flow compressors[J]. ASME Journal of Turbomachinery, 1993, 115(1):1-9.
[11] Camp T R, Day I J. A study of spike and modal stall phenomena in a low-speed axial compressor[J]. ASME Journal of Turbomachinery, 1998, 120(3):393-401.
[12] Hoying D A, Tan C S, Vo H D, et al. Role of blade passage flow structures in axial compressor rotating stall inception[J]. Journal of Turbomachinery, 1999, 121(4):735-742.
[13] Saathoff H, Stark U. Tip clearance flow induced endwall boundary layer separation in a single-stage axial-flow low-speed compressor, GT2000-0501[R]. Munich:ASME, 2000.
[14] Vo H D. Role of tip clearance flow on axial compressor stability[D]. Massachusetts:Massachusetts Institute of Technology, 2001.
[15] Hah C, Bergner J, Schiffer H-P. Short length-scale rotating stall inception in a transonic axial compressor-criteria and mechanisms, GT2006-90045[R]. Barcelona:ASME, 2006.
[16] Brouckaert J F, Van de Wyer N, Farkas B, et al. Unsteady pressure measurements in a single stage low pressure axial compressor:Tip vortex flow and stall inception, GT2009-59771[R]. Orlando:ASME, 2009.
[17] Lin F, Li M L, Chen J Y. Long-to-short length scale transition:A stall inception phenomenon in an axial compressor with inlet distortion, GT2005-68656[R]. Reno-Tahoe:ASME, 2005.
[18] Bennington M A, Cameron J D, Morris S C, et al. Investigation of tip-flow based stall criteria using rotor casing visualization, GT2008-51319[R]. Berlin:ASME, 2008.
[19] Du J, Lin F, Chen J Y, et al. Numerical study on the influence mechanism of inlet distortion on the stall margin in a transonic axial rotor[J]. Journal of Thermal Science, 2012, 21(3):209-214.
[20] Li J C, Lin F, Wang S C, et al. Extensive experimental study of circumferential single groove in an axial flow compressor, GT2014-26859[R]. Düsseldorf:ASME, 2014. |