[1] Puig L, Barton A, Rando N. A review on large deployable structures for astrophysics missions[J]. Acta Astronautica, 2010, 67(1):12-26.[2] Ma X R, Yu D Y, Sun J, et al. The researching evolvement of spacecraft deployment and driving mechanism[J]. Journal of Astronautics, 2006, 27(6): 1123-1131. (in Chinese) 马兴瑞, 于登云, 孙京, 等. 空间飞行器展开与驱动机构研究进展[J]. 宇航学报, 2006, 27(6): 1123-1131.[3] Ge D M, Chen W J, Fu G Y, et al. Buckling theoretic analysis of coilable hingeless extendible/retractable space mast[J]. Chinese Journal of Computational Mechanics, 2007, 24(5):615-619. (in Chinese) 戈冬明, 陈务军, 付功义, 等. 盘绕式空间可展折叠无铰伸展臂的屈曲分析理论研究[J]. 计算力学学报, 2007, 24(5): 615-619.[4] Yang Y, Ding X L. Kinematic analysis of a plane deployable mechanism assembled by four pyramid cells[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1257-1265. (in Chinese) 杨毅, 丁希仑. 四棱锥单元平板式可展开收拢机构的运动特性分析[J]. 航空学报, 2010, 31(6): 1257-1265.[5] Hachkowski M R, Peterson L D. A comparative history of the precision of deployable spacecraft structures[J]. CU-CAS-95-22, 1995.[6] Cong Q. ERM and its aplications in deployable antennas of satellites[J]. Spacecraft Engineering, 1996, 5(1): 105-109. (in Chinese) 从强. ERM及其在卫星天线展开机构上的应用[J]. 航天器工程, 1996, 5(1): 105-109.[7] Block J, Straubel M, Wiedemann M. Ultralight deployable booms for solar sails and other large gossamer structures in space[J]. Acta Astronautica, 2010, 68(7): 984-992.[8] Fernandeza J M, Lappasa V J, Daton-Lovettb A J. Completely stripped solar sail concept using bi-stable reeled composite booms[J]. Acta Astronautica, 2010, 69(1): 78-85.[9] Hakkak F, Khoddam S. On calculation of preliminary design parameters for lenticular booms[J]. Aerospace Engineering, 2006, 221(3): 377-384.[10] Guest S D, Pellegrino S. Analytical models for bistable cylindrical shells[J]. The Royal Society, 2006, 462(2067): 839-854.[11] Hoffait S, Bruls O, Granville D, et al. Dynamic analysis of the self-locking phenomenon in tape-spring hinges[J]. Acta Astronautica, 2010, 66(7):1125-1132.[12] Yao X F, Ma Y J, Yin Y J, et al. Design theory and dynamic mechanical characterization of the deployable composite tube hinge[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(4): 633-639.[13] Soykasap Ö. Deployment analysis of a self-deployable composite boom[J]. Composite Structures, 2008, 89(3): 374-381.[14] Mallikarachchi H M Y C, Pellegrino S. Quasi-static folding and deployment of ultrathin composite tape-spring hinges[J]. Journal of Spacecraft and Rockets, 2011, 48(1):187-198.[15] Postma R W. Torque loss and stress relaxation in constant torque springs[C]//The 38th Aerospace Mechanisms Symposium. Virginia: Langley Research Center, 2006: 163-168.[16] Shan H Z. Mechanics of materials courses[M]. Beijing: China Higer Education Press, 2004: 84-85, 201-205.(in Chinese) 单辉祖. 材料力学教程[M]. 北京: 高等教育出版社, 2004: 84-85, 201-205.[17] Liu G. Decomposition-based friction compensation of mechanical systems[J]. Mechatronics, 2002, 12(5): 755-769.[18] Rehnmark F, Pryor M, Carrington C. Development of a deployable nonmetallic boom for reconfigurable systems of small spacecraft[C]//The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. April 23-26, Honolulu, Hawaii, 2007: 2184-2205.[19] Young W C, Budynas R G. Roark's formulas for stress and stress[M]. New York: McGraw-Hill Companies Inc, 2002: 766. |