1 |
CelesTrak: SATCAT Boxscore[EB/OL]. (2024-03-10)[2024-03-10]. .
|
2 |
PARDINI C, ANSELMO L. Review of past on-orbit collisions among cataloged objects and examination of the catastrophic fragmentation concept[J]. Acta Astronautica, 2014, 100: 30-39.
|
3 |
PHILLIP A, JOHN O. History of on-orbit satellite fragmentations[EB/OL]. (2023-01-20)[2024-03-10]. .
|
4 |
BARROWS S P, SWINERD G G, CROWTHER R. Review of debris-cloud modeling techniques[J]. Journal of Spacecraft and Rockets, 1996, 33(4): 550-555.
|
5 |
MCKNIGHT D, LORENZEN G. Collision matrix for low earth orbit satellites[J]. Journal of Spacecraft and Rockets, 1989, 26(2): 90-94.
|
6 |
JEHN R. Dispersion of debris clouds from on-orbit fragmentation events[C]∥41st, International Astronautical Congress(IAF); Dresden, Federal Republic of Germany. 1990.
|
7 |
CHOBOTOV V. Dynamics of orbiting debris clouds and the resulting collision hazard to spacecraft[J]. Journal of the British Interplanetary Society, 1990, 43(5): 187-194.
|
8 |
SPENCER D B. The effects of eccentricity on the evolution of an orbiting debris cloud[C]∥Proceedings of the AAS/AIAA Astrodynamics Conference. San Diego, CA: UNIVELT INC, 1988: 791-807.
|
9 |
BARROWS S. Evolution of artificial space debris clouds[D]. Southampton: University of Southampton, 1996: 30-37.
|
10 |
HUJSAK R S. Nonlinear dynamical model of relative motion for the orbiting debris problem[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(2): 460-465.
|
11 |
HOUSEN K R. The short-term evolution of orbital debris clouds[J]. Journal of the Astronautical Sciences, 1992, 40(2): 203-213.
|
12 |
BARROWS S, SWINERD G, CROWTHER R. Assessment of the short-term collision hazard resulting from an on-orbit fragmentation event-Polar platform case study[C]∥Astrodynamics Conference. Reston: AIAA, 1994.
|
13 |
HEALY L, KINDL S, BINZ C. Spatial density maps from a debris cloud[C]∥7th European Conference on Space Debris. Darmstadt: ESA Space Debris Office, 2017: 1-15.
|
14 |
HEARD W B. Dispersion of ensembles of non-interacting particles[J]. Astrophysics and Space Science, 1976, 43(1): 63-82.
|
15 |
MCINNES C R. An analytical model for the catastrophic production of orbital debris.[J]. ESA Jour-nal, 1993, 17(4): 293-305.
|
16 |
张育林, 张斌斌, 王兆魁. 空间碎片环境的长期演化建模方法[J]. 宇航学报, 2018, 39(12): 1408-1418.
|
|
ZHANG Y L, ZHANG B B, WANG Z K. Methods for space debris environment long-term evolution modeling[J]. Journal of Astronautics, 2018, 39(12): 1408-1418 (in Chinese).
|
17 |
LETIZIA F, COLOMBO C, LEWIS H G. Analytical model for the propagation of small-debris-object clouds after fragmentations[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(8): 1478-1491.
|
18 |
WEN C X, GURFIL P. Modeling early medium-term evolution of debris clouds using the reachable domain method[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(12): 2649-2660.
|
19 |
LETIZIA F, COLOMBO C, LEWIS H G. Multidimensional extension of the continuity equation method for debris clouds evolution[J]. Advances in Space Research, 2016, 57(8): 1624-1640.
|
20 |
JEHN R. Dispersion of debris clouds from in-orbit fragmentation events[J]. ESA Journal, 1991, 15(1): 63-77.
|
21 |
VALLADO D A. Fundamentals of astrodynamics and applications[M]. 4th ed. Portland Oregon: Microcosm Press, 2013: 525-594.
|
22 |
WEISSTEIN E W. Sphere point picking[EB/OL]. (2017-03-14) [2023-12-25]. .
|
23 |
CHOBOTOV V, SPENCER D, SCHMITT D, et al. Dynamics of debris motion and the collision hazard to spacecraft resulting from an orbital breakup: TR SD-TR-88-96[R]. El Segundo: Aerospace Corp., 1988.
|
24 |
龚自正, 赵秋艳, 李明, 等. 空间碎片防护研究前沿问题与展望[J]. 空间碎片研究, 2019, 19(3): 2-13.
|
|
GONG Z Z, ZHAO Q Y, LI M, et al. The frontier problem and prospect of space debris protection research[J]. Space Debris Research, 2019, 19(3): 2-13 (in Chinese).
|
25 |
FREY S, COLOMBO C. Transformation of satellite breakup distribution for probabilistic orbital collision hazard analysis[J]. Journal of Guidance, Control, and Dynamics, 2020, 44(1): 88-105.
|
26 |
彭科科. 近地轨道空间碎片环境工程模型建模技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 70-71.
|
|
PENG K K. Research on modeling technology of space debris environmental engineering model in near-earth orbit[D]. Harbin: Harbin Institute of Technology, 2015: 70-71 (in Chinese).
|
27 |
VINH N X, GILBERT E G, HOWE R M, et al. Reachable domain for interception at hyperbolic speeds[J]. Acta Astronautica, 1995, 35(1): 0094576594001326.
|
28 |
XUE D, LI J F, BAOYIN H X, et al. Reachable domain for spacecraft with a single impulse[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 934-942.
|
29 |
WEN C X, SUN Y, PENG C, et al. Reachable domain under J2 perturbation for satellites with a single impulse[J]. Journal of Guidance, Control, and Dynamics, 2022, 46(1): 64-79.
|
30 |
BEYERW H. CRC standard mathematical tables[M]. Boca Raton: CRC Press, 1984.
|
31 |
BOURKE P. Polygons and meshes[EB/OL]. (1998-03-01)[2023-11-21]. .
|
32 |
GIUDICI L, TRISOLINI M, COLOMBO C. Probabilistic multi-dimensional debris cloud propagation subject to non-linear dynamics[J]. Advances in Space Research, 2023, 72(2): 129-151.
|