Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (5): 529670-529670.doi: 10.7527/S1000-6893.2023.29670
• Reviews • Previous Articles Next Articles
Liang XIONG1,2(), Rui ZHANG1, Yanzhi LONG2
Received:
2023-10-04
Revised:
2023-10-08
Accepted:
2023-10-10
Online:
2024-03-15
Published:
2023-10-13
Contact:
Liang XIONG
E-mail:xixiangxl@126.com
Supported by:
CLC Number:
Liang XIONG, Rui ZHANG, Yanzhi LONG. Development status and prospects of flight air data sensing technology for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529670-529670.
1 | 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377. |
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese). | |
2 | 史彦斌,高宪军,王远达.航空电子系统导论[M].北京:国防工业出版社,2019: 254-258. |
SHI Y B, GAO X J, WANG Y D. Introduction to avionics systems[M]. Beijing: National Defense Industry Press, 2019: 254-258 (in Chinese). | |
3 | 吴文海, 高阳, 汪节. 飞行控制系统的发展历程、现状与趋势[J]. 飞行力学, 2018, 36(4): 1-5, 10. |
WU W H, GAO Y, WANG J. Development course, status and trend of flight control system[J]. Flight Dynamics, 2018, 36(4): 1-5, 10 (in Chinese). | |
4 | 顾诵芬, 史超礼. 世界航空发展史[M]. 郑州: 河南科学技术出版社, 1998. |
GU S F, SHI C L. The history of the world aviation development[M]. Zhengzhou: Henan Science and Technology Press, 1998 (in Chinese). | |
5 | 秦伟伟, 刘刚, 赵欣. 临近空间高超声速飞行器控制系统基本原理[M]. 北京: 北京航空航天大学出版社, 2019: 24-26. |
QIN W W, LIU G, ZHAO X. Basic principle of control system for near-space hypersonic vehicle[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2019: 24-26 (in Chinese). | |
6 | 张怀根, 何强. 机载雷达抗干扰技术现状与发展趋势[J]. 现代雷达, 2021, 43(3): 1-7. |
ZHANG H G, HE Q. Development and prospect of airborne radar anti-jamming technique[J]. Modern Radar, 2021, 43(3): 1-7 (in Chinese). | |
7 | 宋述杰. 虚拟传感器研究[D]. 西安: 西北工业大学, 2004: 1-8. |
SONG S J. Research on virtual sensor[D].Xi’an: Northwestern Polytechnical University, 2004: 1-8 (in Chinese). | |
8 | 李睿佳, 李荣冰, 刘建业, 等. 跨音速大气/惯性攻角两步融合算法[J]. 应用科学学报, 2010, 28(1): 99-105. |
LI R J, LI R B, LIU J Y, et al. Two-step fusion algorithm for ADS/INS angles of attack on transonic flight[J]. Journal of Applied Sciences, 2010, 28(1): 99-105 (in Chinese). | |
9 | 马航帅, 雷廷万, 李荣冰, 等. 大攻角下基于信息融合的攻角/侧滑角估计方法[J]. 电光与控制, 2012, 19(8): 1-5. |
MA H S, LEI T W, LI R B, et al. Estimation method for angle-of-attack and sideslip angle based on information fusion at high angle of attack[J]. Electronics Optics & Control, 2012, 19(8): 1-5 (in Chinese). | |
10 | 马航帅. 基于虚拟大气的大攻角大气数据估计技术研究[D]. 南京: 南京航空航天大学, 2012: 1-59. |
MA H S. Research on the estimation technology of air data based on virtual air data at high angle of attack[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 1-59 (in Chinese). | |
11 | 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013. |
SANG J H. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013 (in Chinese). | |
12 | 魏小龙, 韩欣珉, 李益文. 动态可调等离子体隐身技术[M]. 北京: 科学出版社, 2021: 13-15. |
WEI X L, HAN X M, LI Y W. Dynamic adjustable plasma stealth technology[M]. Beijing: Science Press, 2021: 13-15 (in Chinese). | |
13 | 葛志闪. 飞翼布局无人机控制律设计[D]. 西安: 西北工业大学, 2007: 1-83. |
GE Z S. Design of control law for UAV with flying wing layout[D].Xi’an: Northwestern Polytechnical University, 2007: 1-83 (in Chinese). | |
14 | 李永丰, 吕永玺, 史静平, 等. 深度确定性策略梯度和预测相结合的无人机空战决策研究[J]. 西北工业大学学报, 2023, 41(1): 56-64. |
LI Y F, LYU Y X, SHI J P, et al. UAV’s air combat decision-making based on deep deterministic policy gradient and prediction[J]. Journal of Northwestern Polytechnical University, 2023, 41(1): 56-64 (in Chinese). | |
15 | 张羽白, 肖成方, 邹俊俊, 等. 飞翼布局无人机控制律设计[J]. 测控技术, 2021, 40(1): 123-131. |
ZHANG Y B, XIAO C F, ZOU J J, et al. Design of flight control law for a flying-wing UAV[J]. Measurement & Control Technology, 2021, 40(1): 123-131 (in Chinese). | |
16 | 范力元, 张浩哲, 徐钊, 等. 基于安全飞行走廊的无人机密集障碍规避算法[J]. 西北工业大学学报, 2022, 40(6): 1288-1296. |
FAN L Y, ZHANG H Z, XU Z, et al. A dense obstacle avoidance algorithm for UAVs based on safe flight corridor[J]. Journal of Northwestern Polytechnical University, 2022, 40(6): 1288-1296 (in Chinese). | |
17 | 甄子洋, 朱平, 江驹, 等. 基于自适应控制的近空间高超声速飞行器研究进展[J]. 宇航学报, 2018, 39(4): 355-367. |
ZHEN Z Y, ZHU P, JIANG J, et al. Research progress of adaptive control for hypersonic vehicle in near space[J]. Journal of Astronautics, 2018, 39(4): 355-367 (in Chinese). | |
18 | 吴宏鑫, 孟斌. 高超声速飞行器控制研究综述[J]. 力学进展, 2009, 39(6): 756-765. |
WU H X, MENG B. Review on the control of hypersonic flight vehicles[J]. Advances in Mechanics, 2009, 39(6): 756-765 (in Chinese). | |
19 | 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11): 1901-1913. |
SUN C Y, MU C X, YU Y. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinica, 2013, 39(11): 1901-1913 (in Chinese). | |
20 | 丁智坚, 周欢, 吴东升, 等. 嵌入式大气数据测量系统技术研究进展[J]. 宇航学报, 2019, 40(3): 247-257. |
DING Z J, ZHOU H, WU D S, et al. Review of flush air data sensing system[J]. Journal of Astronautics, 2019, 40(3): 247-257 (in Chinese). | |
21 | CARY J, KEENER E R. Flight evaluation of the X-15 ball-nose flow-direction sensor as an air-data system: NASA TN D-2923[R]. Washington, D.C.: NASA, 1965. |
22 | ROW P, FISCHEL J. Operational flight-test experience with the X-15 airplane[C]∥Proceedings of the Space Flight Testing Conference. Reston: AIAA, 1963. |
23 | WOESTE T. Shuttle entry air data system-an experimental investigation of calibration for ascent flight[C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
24 | SIEMERS P M, PAUL M, HENRY M W,et al . Shuttle entry air data system (SEADS)-flight verification of an advanced air data system concept: AIAA 88-2104[R]. Reston: AIAA, 1988. |
25 | HENRY M, WOLF H, SIEMERS P. An evaluation of Shuttle entry air data system (SEADS) flight pressures-comparisons with wind tunnel and theoretical predictions[C]∥Proceedings of the 15th Aerodynamic Testing Conference. Reston: AIAA, 1988. |
26 | WHITMORE S, MOES T, LARSON T J. Preliminary results from a subsonic high angle-of-attack flush airdata sensing (HI-FADS) system: Design, calibration, and flight test evaluation: AIAA-90-0232 [R]. Reston: AIAA, 1990. |
27 | WHITMORE S A, MOES T R, LEONDES C T. Development of a pneumatic high-angle-of-attack flush airdata sensing (HI-FADS) system[M]∥Control and Dynamic Systems. Amsterdam: Elsevier, 1992: 453-511. |
28 | WEISS S. Comparing three algorithms for modeling flush air data systems[C]∥Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. |
29 | WHITMORE S, COBLEIGH B, HAERING E Jr. Design and calibration of the X-33 flush airdata sensing (FADS) system[C]∥Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998. |
30 | COBLEIGH B, WHITMORE S, HAERING E Jr, et al. Flush airdata sensing (FADS) system calibration procedures and results for blunt forebodies[C]∥Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. |
31 | ELLSWORTH J, WHITMORE S. Reentry air data for a sub-orbital spacecraft based on X-34 design[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
32 | ELLSWORTH J C, WHITMORE S A. Simulation of a flush air-data system for transatmospheric vehicles[J]. Journal of Spacecraft and Rockets, 2008, 45(4): 716-732. |
33 | BAUMANN E, PAHLE J W, DAVIS M C, et al. X-43A flush airdata sensing system flight-test results[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 48-61. |
34 | TAKAKI R, TAKIZAWA M, TAKAKI R, et al. ADS measurement of HYFLEX (HYpersonic FLight EXperiment)[C]∥Proceedings of the 35th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1997. |
35 | THEIL S, SCHLOTTERER M, HALLMANN M, et al. Hybrid navigation system for the SHEFEX-2 mission[C]∥AIAA Guidance, Navigation and Control Conference and Exhibit. Reston: AIAA, 2008. |
36 | 岳亚洲, 李彬, 雷宏杰. 激光大气运动参数测量技术研究进展及展望(特邀)[J]. 光子学报, 2022, 51(4): 9-23. |
YUE Y Z, LI B, LEI H J. Advances and prospects of laser measurement technology for air motion parameters(invited)[J]. Acta Photonica Sinica, 2022, 51(4): 9-23 (in Chinese). | |
37 | CALDWELL L M, TANG S Y, O’BRIEN M. Optical air data systems and methods: US7760339[P]. 2010-07-20. |
38 | CALDWELL L M, O’BRIEN M J, WEIMER C S, et al. Optical air data systems and methods: US6894768[P]. 2005-05-17. |
39 | CALDWELL L M, TANG S Y, ACOTT P E, et al. Optical air data systems and methods: US8072584[P]. 2011-12-06. |
40 | 孙友师. 光学大气数据测量系统的发展研究[J]. 测控技术, 2010, 29: 6-9. |
SUN Y S. Progress of optical air data measurement systems[J]. Measurement & Control Technology,2010,29:6-9 (in Chinese). | |
41 | BOGUE R K. Recent flight-test results of optical airdata techniques[C]∥SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale: SAE International, 1992. |
42 | MAMIDIPUDI P, DAKIN E A, DAKIN D C, et al. LandSafe precision flight instrumentation system: The DVE solution[C]∥Procceeding SPIE,Airborne ISR Systems and Applications, 2012 |
43 | 秋路, 屈飞舟, 惠辉辉. 机载激光测速技术在大气数据校准领域的应用研究[J]. 航空科学技术, 2019, 30(2): 32-36. |
QIU L, QU F Z, HUI H H. Research on applications of airborne laser anemometry in air data calibration[J]. Aeronautical Science & Technology, 2019, 30(2): 32-36 (in Chinese). | |
44 | ROEDNEY K B, HENK W J. Optical air flow measurements in flight: NASA/TP-2004-210735 [R]. Washington, D.C.: NASA, 2004. |
45 | VERBEEK M, JENTINK H. Optical air data system flight testing: NLR-TP-2012-068[R]. Amsterdam: NLR, 2012 |
46 | 梁应剑, 梅运桥, 程丽媛, 等. 基于米散射的光学大气数据系统研究[J]. 测控技术, 2015, 34(1): 32-34. |
LIANG Y J, MEI Y Q, CHENG L Y, et al. Research on optical air data system based on Mie scattering[J]. Measurement & Control Technology, 2015, 34(1): 32-34 (in Chinese). | |
47 | 王晓维,梁应剑,李翔,等.基于光学多普勒频移的低空速测量方法研究[J].激光技术,2016,40(5):629-632. |
WANG X W, LIANG Y J, LI X,et al. Research of low-airspeed measurement based on optidal doppler frequency shift[J]. Laser Technology,2016,40(5):629-632 (in Chinese). | |
48 | 龙彦志, 梁应剑, 黄巧平, 等. 基于多普勒频移的光学大气测速系统设计[J]. 北京航空航天大学学报, 2018, 44(12): 2521-2527. |
LONG Y Z, LIANG Y J, HUANG Q P, et al. Design of optical airspeed measurement system based on Doppler shift[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2521-2527 (in Chinese). | |
49 | 李彬, 雷宏杰, 靳文华, 等. 相干探测系统最佳本振光功率测量方法(特邀)[J]. 光子学报, 2021, 50(10): 254-260. |
LI B, LEI H J, JIN W H, et al. Approach for measuring the optimal local optical power of coherent detection system (invited)[J]. Acta Photonica Sinica, 2021, 50(10): 254-260 (in Chinese). | |
50 | BURDGE G, DEIBNER G, SHAPRIO J, et al. Quantum sensors program[M]. New York:Defense Advanced Research Projects Agency,2009. |
51 | DUTTON Z, SHAPIRO J H, GUHA S. LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification: Erratum[J]. Journal of the Optical Society of America B, 2010, 27(10): 2007. |
52 | 冯飞, 许江盟, 马菁汀, 等. 基于压缩光的量子激光雷达技术[J]. 光子学报, 2017, 46(5): 0527001. |
FENG F, XU J M, MA J T, et al. Quantum lidar based on squeezed sates of light[J]. Acta Photonica Sinica, 2017, 46(5): 0527001 (in Chinese). | |
53 | 张建东, 张子静, 赵远, 等. 压缩真空注入超灵敏干涉型量子激光雷达[J]. 红外与激光工程, 2017, 46(7): 64-69. |
ZHANG J D, ZHANG Z J, ZHAO Y, et al. Super-sensitivity interferometric quantum lidar with squeezedvacuum injection[J]. Infrared and Laser Engineering, 2017, 46(7): 64-69 (in Chinese). | |
54 | 高丽, 张晓莉, 马菁汀, 等. 基于集成量子压缩光源的量子增强多普勒激光雷达(特邀)[J]. 红外与激光工程, 2021, 50(3): 71-77. |
GAO L, ZHANG X L, MA J T, et al. Quantum enhanced Doppler LiDAR based on integrated quantum squeezed light source(Invited)[J]. Infrared and Laser Engineering, 2021, 50(3): 71-77 (in Chinese). | |
55 | 上官明佳. 1.5μm单光子探测器在激光遥感中的应用[D]. 合肥: 中国科学技术大学, 2017: 1-24. |
SHANGGUAN M J. Laser remote sensing with 1.5μM single photon detectors[D]. Hefei: University of Science and Technology of China, 2017: 1-24 (in Chinese). | |
56 | SHCHERBATENKO M, LOBANOV Y, SEMENOV A, et al. Potential of a superconducting photon counter for heterodyne detection at the telecommunication wavelength[J]. Optics Express, 2016, 24(26): 30474. |
57 | 柳平, 延黎, 刘东亮, 等. 基于主客观组合赋权的PSSA安全性指标分配方法[J]. 火力与指挥控制, 2019, 44(12): 127-131. |
LIU P, YAN L, LIU D L, et al. The PSSA security index allocation method based on the subjective and objective combination weighting[J]. Fire Control & Command Control, 2019, 44(12): 127-131 (in Chinese). | |
58 | Control SpaceAge. Air data products solution guide[EB/OL]. . |
59 | Control SpaceAge. Air data sensing UAV special edition[EB/OL]. . |
60 | GOODRICH. Pitot and Pitot-Static Probes[EB/OL].. |
61 | DENNIS J C, THOMAS D A. Sideslip correction for a multi-function three probe air data system: US 2003/6609421 B2 [P]. 2003-08-26. |
62 | GREG A S, DENNIS J C. Multi-function air data sensing probe having an angle of attack vane: US 2005/6941805 B2 [P]. 2005-09-13. |
63 | HAGEN F W, SEIDEL H. Deutsche airbus flight test of Rosemount smart probe for distributed air data systems[C]∥1993 Proceedings AIAA/IEEE Digital Avionics Systems Conference. Piscataway: IEEE Press, 2002: 110-117. |
64 | 宋秀毅, 陆宇平. 嵌入式大气数据传感系统压力传感器设计研究[J]. 计测技术, 2007, 27(5): 8-10, 19. |
SONG X Y, LU Y P. Research on design of pressure sensor of embedded airdata sensing system[J]. Metrology & Measurement Technology, 2007, 27(5): 8-10, 19 (in Chinese). | |
65 | 沈国清. 嵌入式大气数据传感系统误差分析及其消除方法研究[D]. 南京: 南京航空航天大学, 2012: 15-23. |
SHEN G Q. Error analysis of flush air data sensing system&research on methods of error eliminating[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 15-23 (in Chinese). | |
66 | WHITMORE S, MOES T. The effects of pressure sensor acoustics on airdata derived from a high-angle-of-attack flush airdata sensing (HI-FADS) system[C]∥AIAA Aerospace Sciences Meeting.Reston: AIAA, 1991. |
67 | 高隆隆, 杜经民, 李宝仁. FADS测压管路动态响应特性分析[J]. 机床与液压, 2010, 38(13): 48-51. |
GAO L L, DU J M, LI B R. Dynamic response characteristic of FADS pneumatic tube[J]. Machine Tool & Hydraulics, 2010, 38(13): 48-51 (in Chinese). | |
68 | 王希洋, 柏楠, 苑景春, 等. FADS系统变管径引气管路压力延迟误差补偿方法[J]. 战术导弹技术, 2015(2): 37-42. |
WANG X Y, BO N, YUAN J C, et al. Compensation method of pneumatic lag error for FADS system with unequal-diameter tube[J]. Tactical Missile Technology, 2015(2): 37-42 (in Chinese). | |
69 | 李清东, 张孝功, 任章. FADS压力传感器延迟补偿[J]. 航天控制, 2008, 26(6): 12-15. |
LI Q D, ZHANG X G, REN Z. The time delay compensation method for the pressure sensors of FADS[J]. Aerospace Control, 2008, 26(6): 12-15 (in Chinese). | |
70 | 任森. SOI基高精度微机械谐振式压力传感器技术研究[D]. 西安: 西北工业大学, 2015: 5-13. |
REN S. Research on SOI-based high precision MEMS resonant pressure sensor technology[D].Xi’an: Northwestern Polytechnical University, 2015: 5-13 (in Chinese). | |
71 | 姚敏强, 康志宏, 宋继红. 振动筒压力传感器开环测试特征参数分析[J]. 仪表技术与传感器, 2016(7): 29-31. |
YAO M Q, KANG Z H, SONG J H. Characteristic parameters analysis of vibration cylinder pressure sensor open loop test[J]. Instrument Technique and Sensor, 2016(7): 29-31 (in Chinese). | |
72 | 李斌. 振动筒用恒弹性合金发展概述[J]. 金属功能材料, 2010, 17(5): 67-70. |
LI B. Development outline of constant elastic alloys used for vibration cylinder pressure sensor[J]. Metallic Functional Materials, 2010, 17(5): 67-70 (in Chinese). | |
73 | 朱亚辉, 于一鹏. 谐振传感器用新型恒弹性合金研究[J]. 金属功能材料, 2018, 25(4): 50-53. |
ZHU Y H, YU Y P. Study on a new type of constant elastic alloy for resonance sensor[J]. Metallic Functional Materials, 2018, 25(4): 50-53 (in Chinese). | |
74 | YU J, LU Y L, XIE B, et al. An electrostatic comb excitation resonant pressure sensor for high pressure applications[J]. IEEE Sensors Journal, 2022, 22(16): 15759-15768. |
75 | SHI X Q, LU Y L, XIE B, et al. A resonant pressure microsensor based on double-ended tuning fork and electrostatic excitation/piezoresistive detection[J]. Sensors, 2018, 18(8): 2494. |
76 | 赵晋敏, 李守荣, 王军波, 等. 扩散硅谐振式压力传感器同频干扰的建模与消除[J]. 传感技术学报, 2009, 22(3): 362-365. |
ZHAO J M, LI S R, WANG J B, et al. Model and elimination for co-channel interference in diffused silicon resonant pressure sensor[J]. Chinese Journal of Sensors and Actuators, 2009, 22(3): 362-365 (in Chinese). | |
77 | 孙晋豪, 樊尚春, 邢维巍. 硅微机械谐振式压力传感器闭环方法[J]. 电子测量技术, 2012, 35(10): 1-7. |
SUN J H, FAN S C, XING W W. Closed loop control of silicon micromachined resonant pressure sensors[J]. Electronic Measurement Technology, 2012, 35(10): 1-7 (in Chinese). | |
78 | 徐枝蕃. 硅微谐振式压力传感器闭环频率跟踪电路的研究与设计[D]. 合肥: 合肥工业大学, 2019: 1-53. |
XU Z F. Research and design of closed-loop frequency tracking circuit for silicon microresonance pressure sensor[D]. Hefei: Hefei University of Technology, 2019: 1-53 (in Chinese). | |
79 | 苑伟政, 任森, 邓进军, 等. 硅微机械谐振压力传感器技术发展[J]. 机械工程学报, 2013, 49(20): 2-9. |
YUAN W Z, REN S, DENG J J, et al. A review of silicon micromachined resonant pressure sensor[J]. Journal of Mechanical Engineering, 2013, 49(20): 2-9 (in Chinese). | |
80 | 中华人民共和国航空工业部. 飞行大气参数: [S].中国:航空工业部,1987:1-498. |
Ministry of Aviation Industry of the People’s Republic of China. Flight atmosphere parameter: [S] .China: Ministry of Aviation Industry,1987:1-498 (in Chinese). | |
81 | 肖建德. 大气数据计算机系统[M]. 北京: 国防工业出版社, 1992: 35-45. |
XIAO J D. Air data computer system[M]. Beijing: National Defense Industry Press, 1992: 35-45 (in Chinese). | |
82 | WHITMORE S, COBLEIGH B, HAERING E Jr. Design and calibration of the X-33 flush airdata sensing (FADS) system[C]∥Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998. |
83 | COBLEIGH B, WHITMORE S, HAERING E Jr, et al. Flush airdata sensing (FADS) system calibration procedures and results for blunt forebodies[C]∥Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. |
84 | 方习高, 陆宇平. 嵌入式大气数据传感系统的求解算法研究[J]. 计算机测量与控制, 2008, 16(3): 398-400. |
FANG X G, LU Y P. Research on algorithms of flush airdata sensing system[J]. Computer Measurement & Control, 2008, 16(3): 398-400 (in Chinese). | |
85 | 方习高. 嵌入式大气数据传感系统的技术及应用研究[D]. 南京: 南京航空航天大学, 2007: 12-15. |
FANG X G. Research on the technique and application of flush airdata sensing system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007: 12-15 (in Chinese). | |
86 | 肖地波. 嵌入式大气数据传感系统算法及其关键技术研究[D]. 南京: 南京航空航天大学, 2010: 42-49. |
XIAO D B. Research on flush airdata sensing system algorithms and other key technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 42-49 (in Chinese). | |
87 | 郑守铎, 陆宇平, 叶玮. 小扰动线性化分析法在嵌入式大气传感系统中的应用[J]. 飞机设计, 2007, 27(3): 13-17. |
ZHENG S D, LU Y P, YE W. Application of small disturbances linearized stability analysis to FADS system[J]. Aircraft Design, 2007, 27(3): 13-17 (in Chinese). | |
88 | ROHLOFF T J, WHITMORE S A, CATTON I. Air data sensing from surface pressure measurements using a neural network method[J]. AIAA Journal, 1998, 36: 2094-2101. |
89 | 张斌, 于盛林. 嵌入式飞行参数传感系统的神经网络算法[J]. 航空学报, 2006, 27(2): 294-298. |
ZHANG B, YU S L. Neural network algorithm for flush airdata sensing system[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(2): 294-298 (in Chinese). | |
90 | 郑成军, 陆宇平, 陈峰. 广义逆在嵌入式大气数据传感系统中的应用[J]. 传感器与微系统, 2006, 25(5): 81-84. |
ZHENG C J, LU Y P, CHEN F. Application of pseudoinverse matrix in flush airdata sensing system[J]. Transducer and Microsystem Technologies, 2006, 25(5): 81-84 (in Chinese). | |
91 | 郑成军, 陆宇平, 高璐. BP网络在嵌入式大气数据传感系统中的应用[J]. 测控技术, 2006, 25(6): 9-12. |
ZHENG C J, LU Y P, GAO L. Application of back propagation in flush airdata sensing system[J]. Measurement & Control Technology, 2006, 25(6): 9-12 (in Chinese). | |
92 | 王逸斌, 刘学强, 覃宁, 等. 嵌入式大气数据系统Kriging算法模型[J]. 测控技术, 2015, 34(3): 138-141. |
WANG Y B, LIU X Q, QIN N, et al. A novel flush airdata system model based on kriging algorithm[J]. Measurement & Control Technology, 2015, 34(3): 138-141 (in Chinese). | |
93 | 美军公布B 2坠机直接原因[EB/OL]. . |
The US military announced the immediate cause of the B 2 crash[EB/OL]. (in Chinese). | |
94 | BEA. Final Report flight AF 447 Rio de Janeiro-Paris[R].2012. |
95 | International SAE. Minimum performance standard for pitot and pitot-static probes: SAE AS 8006A [S]. Washington, D.C.: SAE, 2015. |
96 | International SAE. Airspeed tubes electrically heated: SAE AS393 [S]. Washington, D.C.: SAE, 2015. |
97 | International SAE. Ice and Rain Minimum Qualification Standards for Pitot and Pitot-static Probes: SAE AS 5562-2015 [S]. Washington, D.C.: SAE, 2015. |
98 | Federal Aviation Administration. Electrically heated pitot and pitot-statictubes: TSO-C16a [S]. Washington, D.C.: FAA, 2010. |
99 | Federal Aviation Administration. Electrically heated pitot and pitot-statictubes: TSO-C16b [S]. Washington, D.C.: FAA, 2017. |
100 | 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2011. |
Civil Aviation Administration of China. China civil aviation regulations part 25: Airworthiness standards of transport category aircraft: CCAR-25-R4 [S]. Beijing: Civil Aviation Administration of China, 2011 (in Chinese). | |
101 | RTCA. Environmental conditions and test procedures for airborne equipment: RTCA DO-160G [S]. Washington, D.C.: RTCA, 2010. |
102 | 中华人民共和国工业和信息化部. 民用飞机机载设备环境条件和试验方法第13部分: 结冰试验: [S]. 北京: 中国航空综合技术研究所, 2014. |
Ministry of Industry and Information Technology of the People’s Republic of China. Environmental conditions and test methods for airborne equipment of civil aircraft: Part 13: Icing Test: [S]. Beijing: Aeronautical Comprehensive Technology Research Institute of China,2014 (in Chinese). | |
103 | 李悟军,石磊,吴德兴. 民用航空器电热空速管最低性能要求: [S].北京:中国航空工业总公司,1996. |
LI W J, SHI L, WU D X. Minimum performance requirements for electric pitot tubes in civil aircraft: [S]. Beijing: Aviation Industry Corporation of China,1996 (in Chinese). | |
104 | KOCH K, BARTHLOTT W. Superhydrophobic and superhydrophilic plant surfaces: An inspiration for biomimetic materials[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367(1893): 1487-1509. |
105 | 高雪峰, 江雷. 天然超疏水生物表面研究的新进展[J]. 物理, 2006, 35(7): 559-564. |
GAO X F, JIANG L. Recent studies of natural superhydophobic bio-surfaces[J]. Physics, 2006, 35(7): 559-564 (in Chinese). | |
106 | 佟威, 熊党生. 仿生超疏水表面的发展及其应用研究进展[J]. 无机材料学报, 2019, 34(11): 1133-1144. |
TONG W, XIONG D S. Bioinspired superhydrophobic materials: Progress and functional application[J]. Journal of Inorganic Materials, 2019, 34(11): 1133-1144 (in Chinese). | |
107 | 方楠, 王敏, 王晓静, 等. 国外超疏水材料最新进展及其军用潜力分析[J]. 军民两用技术与产品, 2022(5): 16-19. |
FANG N, WANG M, WANG X J, et al. The latest development of superhydrophobic materials abroad and its military potential analysis[J]. Dual Use Technologies & Products, 2022(5): 16-19 (in Chinese). | |
108 | SHEN Y Z, LIU S Y, ZHU C L, et al. Facile fabrication of hierarchical structured superhydrophobic surface and its ultra dynamic water repellency[J]. Chemical Engineering Journal, 2017, 313: 47-55. |
109 | PAN R, ZHANG H J, ZHONG M. Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J]. ACS Applied Materials & Interfaces, 2021,13(1):1743-1753. |
110 | ROY S, IZAD A, DEANNA R G, et al. Smart ice detection systems based on resonant piezoelectric transducers[J]. Sensors and Actuators A: Physical, 1998, 69(3): 243-250. |
111 | WANG H P, HE M J, LIU H, et al. One-step fabrication of robust superhydrophobic steel surfaces with mechanical durability, thermal stability, and anti-icing function[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25586-25594. |
112 | TONG W, XIONG D S, TIAN T, et al. Superhydrophobic surface on aeronautical materials via the deposition of nanoparticles and a PDMS seal[J]. Applied Physics A, 2019, 125(3): 1-8. |
113 | 王新锋. 几种微/纳米结构超疏水材料的制备及其性能研究[D]. 武汉: 湖北大学, 2020: 1-25. |
WANG X F. Preparation and properties of several micro/nanostructured superhydrophobic materials[D]. Wuhan: Hubei University, 2020: 1-25 (in Chinese). | |
114 | 陈广华, 王国威, 宋丹. 镁合金超疏水表面制备技术的研究进展[J]. 材料保护, 2022, 55(6): 134-140. |
CHEN G H, WANG G W, SONG D. Research progress of preparation technology of super-hydrophobic surface on magnesium alloys[J]. Materials Protection, 2022, 55(6): 134-140 (in Chinese). | |
115 | ZHANG W L, WANG D H, SUN Z N, et al. Robust superhydrophobicity: Mechanisms and strategies[J]. Chemical Society Reviews, 2021, 50(6): 4031-4061. |
116 | 潘瑞, 钟敏霖. 超快激光制备超疏水超亲水表面及超疏水表面机械耐久性[J]. 科学通报, 2019, 64(12): 1268-1289. |
PAN R, ZHONG M L. Fabrication of superwetting surfaces by ultrafast lasers and Mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 2019, 64(12): 1268-1289 (in Chinese). | |
117 | 龙江游, 吴颖超, 龚鼎为, 等. 飞秒激光制备超疏水铜表面及其抗结冰性能[J]. 中国激光, 2015, 42(7): 706002. |
LONG J Y, WU Y C, GONG D W, et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese Journal of Lasers, 2015, 42(7): 706002 (in Chinese). | |
118 | 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38. |
LI J, JIAO W C, WANG Y C, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38 (in Chinese). | |
119 | 沈一洲, 谢欣瑜, 陶杰, 等. 超疏水防冰材料的理论基础与应用研究进展[J]. 中国材料进展, 2022, 41(5): 388-397. |
SHEN Y Z, XIE X Y, TAO J, et al. Review on theoretical foundations and applications of superhydrophobic anti-icing materials[J]. Materials China, 2022, 41(5): 388-397 (in Chinese). | |
120 | WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582(7810): 55-59. |
121 | 王德辉. 浸润性与机械稳定性拆分强化构筑超疏水表面及其应用研究[D]. 成都: 电子科技大学, 2020: 11-87. |
WANG D H. Decoupling mechanical and wetting stability for robust superhydrophobic surfaces and application[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 11-87 (in Chinese). | |
122 | 刘晓林, 朱彦曈, 王泽林澜, 等. 飞行器仿生防冰涂层技术现状与趋势[J]. 航空学报, 2022, 43(10): 527331. |
LIU X L, ZHU Y T, WANG Z, et al. Research progress and development trend of bio-inspired anti-icing coatings for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527331 (in Chinese). | |
123 | 林贵平, 卜雪琴, 申晓斌. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016: 152-163. |
LIN G P, BU X Q, SHEN X B. Aircraft icing and anti-icing technology[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2016: 152-163 (in Chinese). | |
124 | 李薇, 叶林, 张杰, 等. 光纤式结冰传感器的试验研究[J]. 华中科技大学学报(自然科学版), 2009, 37(8): 16-18, 22. |
LI W, YE L, ZHANG J, et al. Experimental study on the fiber-optic sensor for direct ice detection[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2009, 37(8): 16-18, 22 (in Chinese). | |
125 | 刘华勇, 刘莉, 曹放华. 大气系统校准的基准空速管法[J]. 实验流体力学, 2013, 27(2): 91-94. |
LIU H Y, LIU L, CAO F H. Reference-air-data-boom method for air data system calibrations[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 91-94 (in Chinese). | |
126 | 秋路, 魏斌. 侧滑角校准飞行试验方法与面临的挑战研究[J]. 科技创新与应用, 2020(26): 115-117. |
QIU L, WEI B. A research on calibration flight test of for the angle of sideslip: Methods and challenges[J]. Technology Innovation and Application, 2020(26): 115-117 (in Chinese). | |
127 | HAERING E. Airdata measurement and calibration: 104316[R]. Washington,D.C.: NASA, 2005 |
128 | 闫晓婧, 杨涛, 药红红. 国外第六代战斗机概念方案与关键技术[J]. 航空科学技术, 2018, 29(4): 18-26. |
YAN X J, YANG T, YAO H H. Conceptual scheme and key technologies of sixth generation fighters abroad[J]. Aeronautical Science & Technology, 2018, 29(4): 18-26 (in Chinese). | |
129 | 王锴, 丁宇, 何大龙. 第六代战斗机发展动向及能力分析[J]. 光电技术应用, 2019, 34(5): 1-6, 15. |
WANG K, DING Y, HE D L. Development trend and capability analysis of the sixth generation fighter[J]. Electro-Optic Technology Application, 2019, 34(5): 1-6, 15 (in Chinese). | |
130 | 赵保军, 陈士涛, 李大喜, 等. 国外六代机发展及作战概念分析[J]. 现代防御技术, 2022, 50(6): 19-25. |
ZHAO B J, CHEN S T, LI D X, et al. Analysis of the sixth generation fighter development and operational concept[J]. Modern Defence Technology, 2022, 50(6): 19-25 (in Chinese). |
[1] | LI Wen, LI Qingdong, LI Liang, CHEN Jian, REN Zhang, LIAN Chengbin, WANG Haoliang. Air data assisted attitude algorithm based on fuzzy adaptive Kalman filter [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(4): 1267-1274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341