Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (24): 28521-028521-.doi: 10.7527/S1000-6893.2023.28521
• Reviews • Previous Articles Next Articles
Xiaohan LIAO1,2,3,4, Wenqiu QU1,2,3(), Chenchen XU1,3,4, Hongbo HE1,2,3, Junwei WANG1,2,3, Weibo SHI5
Received:
2023-02-02
Revised:
2023-02-20
Accepted:
2023-04-06
Online:
2023-12-25
Published:
2023-04-07
Contact:
Wenqiu QU
E-mail:quwenqiu6924@igsnrr.ac.cn
Supported by:
CLC Number:
Xiaohan LIAO, Wenqiu QU, Chenchen XU, Hongbo HE, Junwei WANG, Weibo SHI. A review of urban air mobility and its new infrastructure low⁃altitude public routes[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 28521-028521-.
Table 1
Difference and connection between UAM, ground transportation and civil aviation transportation
分类 | UAM | 地面交通 | 民航运输 |
---|---|---|---|
交通流特性 | 高流量密度 | 高流量密度 | 低流量密度 |
管控方式 | 统一的交通规则,主要自动化管控,人力监管为辅 | 统一的交通规则,主要自动化管控,人力监管为辅 | 人力监管过程 |
服务目的 | 城市内居民出行可选择的一种交通方式 | 城市内居民出行可选择的一种交通方式 | 跨城远距离运输 |
交通发生原因 | 城市内个体居民因购物、通勤、上学等不同出行目的发生的交通行为 | 城市内个体居民因购物、通勤、上学等不同出行目的发生的交通行为 | 个体居民因出差、公务、旅游等出行目的发生的远距离交通行为 |
服务范围 | 城区内、城郊 | 城区内、城郊 | 跨城、跨国 |
服务方式 | 按需响应、狭义的公共交通 | 按需响应、狭义的公共交通 | 固定航班,广义公共交通 |
运行维度 | 三维空间 | 二维平面 | 三维空间 |
载运工具 | 差距大、标准不统一 | 差距不大、标准统一 | 差距不大、标准统一 |
Table 2
Comparison of UAM vehicles
特性 | eVTOL航空器 | 飞行汽车 | 直升机 |
---|---|---|---|
概念 | 电推进垂直起降航空器 | 可以飞行的汽车 | 垂直起降航空器 |
功能 | 空中 | 空中、地面 | 空中 |
气动布局 | 多旋翼、固定翼、复合翼、倾转旋翼等 | 固定翼+车身、旋翼+车身、涵道风扇+车身等 | 单旋翼 |
动力系统 | 分布式电推进动力系统 | 分布式电推进动力系统 | 涡轮轴发动机、活塞式发动机 |
动力来源 | 电力、燃料电池、油电混合等 | 电力、燃料电池、油电混合等 | 航空煤油、汽油 |
技术底层 | 电气化、自动控制 | 传统机械设计、电气化、自动控制 | 传统机械设计 |
应用现状 | 多种机型成功试飞并取得试运营许可 | 全球仅有一款飞行汽车完成试飞,且尚未实现量产 | 常态化应用 |
突出优点 | 安全、噪音小、环保、操作简单、维护成本低 | 陆空两栖使用 | 技术成熟 |
1 | COHEN A P, SHAHEEN S A, FARRAR E M. Urban air mobility: History, ecosystem, market potential, and challenges[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 6074-6087. |
2 | 李诚龙, 屈文秋, 李彦冬, 等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4): 35-54. |
LI C L, QU W Q, LI Y D, et al. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54 (in Chinese). | |
3 | THIPPHAVONG D P, APAZA R, BARMORE B, et al. Urban air mobility airspace integration concepts and considerations: AIAA-2018-3676[R].Reston: AIAA, 2018. |
4 | PATHIYIL L, LOW K, SOON B H, et al. Enabling safe operations of unmanned aircraft systems in an urban environment: A preliminary study[C]∥ proceedings of the The International Symposium on Enhanced Solutions for Aircraft and Vehicle Surveillance Applications (ESAVS 2016), Computer Science. Berlin: Springer, 2016. |
5 | UNICEF. Africa’s first humanitarian drone testing corridor launched in Malawi by Government and UNICEF [EB/OL]. (2017-07-29)[2023-02-02].. |
6 | HANDLER C H. New York State creates nation’s first air corridor for unmanned aerial vehicles [EB/OL]. (2018-01-01)[2023-02-02].. |
7 | ZAZULIA N. Airbus testing unmanned package delivery in Singapore [EB/OL]. (2018-01-07) [2023-02-02].. |
8 | MOHAMED SALLEH M F B, CHI W C, WANG Z K, et al. Preliminary concept of adaptive urban airspace management for unmanned aircraft operations: AIAA-2018-2260[R]. Reston: AIAA, 2018. |
9 | 廖小罕, 徐晨晨, 叶虎平, 等. 无人机应用发展关键基础设施与低空公共航路网规划[J]. 中国科学院院刊, 2022, 37(7): 977-988. |
LIAO X H, XU C C, YE H P, et al. Critical infrastructures for developing UAVs’ applications and low-altitude public air-route network planning[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(7): 977-988 (in Chinese). | |
10 | HARRISON S. From the archives: Los Angeles airways helicopter overturns [EB/OL]. (2017-03-10)[2023-02-02]. . |
11 | WITKIN R. New York airways acts to file for bankruptcy [EB/OL]. (1979-05-16)[2023-02-02]. . |
12 | NASA. Concepts studies for future intracity air transportation systems: FTL report (Massachusetts Institute of Technology. Flight Transportation Laboratory)-R70-2.[R]. Washington, D.C.: NASA, 1970. |
13 | DAVIS J E. A spot of land—the place of V/STOL aircraft in inter-and intra-city transport:SAE Technical Paper Series-400[R]. Warrendale: SAE International, 1964. |
14 | WOOD C. Vertical take-off aircraft for metropolitan and regional service: AIAA-1967-0940[R]. Reston: AIAA, 1967. |
15 | STOUT E G, KESLING P H, MATTESON H C, et al. Study of aircraft in intraurban transportation systems:NASA-CR-1991 [R]. Washington, D.C.: NASA, 1971. |
16 | MOORE M D. Personal air vehiocles: A rural/ regional and inter-urban on-demand transportation system: AIAA-2003-2646 [R].Reston: AIAA, 2003. |
17 | CWERNER S B. Vertical flight and urban mobilities: The promise and reality of helicopter travel[J]. Mobilities, 2006, 1: 191-215. |
18 | KOPARDEKAR P. Unmanned aerial system (UAS) traffic management (UTM): Enabling low-altitude airspace and UAS operations:NASA/TM-2014-218299[R]. Washington, D.C.: NASA, 2014. |
19 | KOPARDEKAR P, RIOS J, PREVOT T, et al. Unmanned aircraft system traffic management (UTM) concept of operations: AIAA-ARC-E-DAA-TN32838[R]. Reston: AIAA, 2016. |
20 | SESAR.U-space⁃Blueprint. (2017-01-09)[2023-02-02].. |
21 | HOLDEN J, GOEL N. Fast-forwarding to a future of on-demand urban air transportation [R]. San Francisco: Ober Elevate, 2016. |
22 | NASA. NASA UAM for ENRI Technical interchange meeting:NASA-AFRC-E-DAATN68911[R].Washington, D.C.: NASA, 2019. |
23 | HOMOLA J, DAO Q A, MARTIN L, et al. Technical capability level 2 unmanned aircraft system traffic management (UTM) flight demonstration: Description and analysis[C]∥ 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2017: 1-10. |
24 | JUNG J, RIOS J L, DREW C R, et al. Unmanned aircraft system traffic management technical capability Level 4 implementation, data collection and analysis: NASA-ARC-E-DAA-TN67713[R].Washington, D.C.: NASA, 2020. |
25 | RIOS J L, MARTIN L, MERCER J. Use of UAS reports (UREPs) during TCL3 field testing:NASA-ARC-E-DAA-TN71147,NASA/TM-2019-220336.[R],2019. Washington, D.C.: NASA. |
26 | SHERMAN J. eVTOLS⁃What are they?Presentation for: An introduction to urban air mobility for state and local decision makers: A virtual workshop sponsored by the community air mobility initiative (CAMI) [EB/OL]. (2021-05-04)[2023-02-02]. . |
27 | BLADE. BLADE Airport fly between Manhattan and JFK or newark for $195 [EB/OL]. (2023-01-01)[2023-02-02]. . |
28 | MATTHEWS L. I took uber copter from Manhattan to JFK—Here’s what it’s like [EB/OL]. (2019-10-03) [2023-02-02]. . |
29 | GUSZKOWSKI J. Drone delivery service flytrex raises $ 40M [EB/OL].(2021-11-19) [2023-02-02]. . |
30 | URBANFOOTPRINT. Using ubanfootprint to plan drone delivery of medicines and vaccines to rural areas [EB/OL].(2021-03-17)[2023-02-02]. . |
31 | AIRBUS. You knew this was coming, and it’s here: Uber for helicopters[EB/OL]. (2017-06-07) [2023-02-02]. . |
32 | AIRBUS. Voom’s helicopter commuting service launches in Mexico City [EB/OL].(2018-03-09)[2023-02-02]. . |
33 | 中国民用航空局. 民用无人驾驶航空发展路线图V 1.0(征求意见稿) [EB/OL].(2022-08-23)[2023-02-02]. . |
Civil Aviation Administration of China. Civilian unmanned aviation development roadmap V 1.0 (draft for comments) [EB/OL].(2022-08-23)[2023-02-02]. (in Chinese). | |
34 | 上海政协.上海市政协十三届三十五次常委会议 [EB/OL]. (2022-07-06)[2023-02-02]. . |
CPPCC Shanghai. Thirty-fifth standing committee meeting of the 13th Shanghai CPPCC. [EB/OL]. (2022-07-06)[2023-02-02]. (in Chinese). | |
35 | 中华人民共和国国家发展和改革委员会, 商务部. 国家发展改革委、商务部关于深圳建设中国特色社会主义先行示范区放宽市场准入若干特别措施的意见 [EB/OL].(2022-01-24)[2023-02-02].. |
NDRC,MOC. Opinions of the National Development and Reform Commission, Ministry of Commerce on several special measures to relax market access in Shenzhen’s construction of a pioneer demonstration zone of socialism with Chinese characteristics [EB/OL]. (2022-01-24)[2023-02-02]. (in Chinese). | |
36 | 亿航. 亿航智能与天行健达成合作,将在中国湖南吉首矮寨奇观旅游区开展EH216自动驾驶飞行器低空游览项目 [EB/OL].(2022-06-27)[2023-02-02]. . |
EHang. EHang intelligent and Tianxingjian have reached a cooperation to launch an EH216 autonomous aircraft low-altitude tour project in the Aizhai wonders tourist area in Jishou, Hunan, China. [EB/OL].(2022-06-27)[2023-02-02]. (in Chinese). | |
37 | 亿航. 亿航智能与Globalvia达成合作,在伊比利亚半岛和拉丁美洲共同发展城市空中交通 [EB/OL]. (2021-07-12)[2023-02-02]. . |
EHang. EHang Intelligent and Globalvia have reached a cooperation to jointly develop urban air transportation in the Iberian Peninsula and Latin America. [EB/OL]. (2021-07-12)[2023-02-02]. (in Chinese). | |
38 | 人民日报. 美团无人机助力全国首个城市低空物流运营示范中心建设 [EB/OL].(2021-07-10)[2023-02-02]. . |
Daily People’s. Meituan drones help build the country’s first urban low-altitude logistics operation demonstration center. [EB/OL].(2021-07-10)[2023-02-02]. (in Chinese). | |
39 | 讯蚁. 讯蚁“天空通道”为疫情内医共体居民提供快捷送药服务 [EB/OL].(2022-02-25)[2023-02-02]. . |
ANTWORK. The“Sky Channel” of Antwork provides fast medicine delivery services to residents of the medical community during the epidemic. [EB/OL].(2022-02-25)[2023-02-02]. (in Chinese). | |
40 | 深圳市司法局. 深圳市司法局关于征求《深圳市民用无人机管理暂行办法(征求意见稿)》意见的通告 [EB/OL].(2021-10-20)[2023-02-02]. . |
Shenzhen Municipal Justice Bureau. Notice of the Shenzhen Municipal Justice Bureau on soliciting opinions on the ‘Interim Measures for the Management of Shenzhen Civilian Drones Draft for Comments)’ [EB/OL].(2021-10-20[2023-02-02]. (in Chinese). | |
41 | 深圳市人民政府办公厅. 深圳市人民政府办公厅关于印发《深圳市推进新型信息基础设施建设行动计划(2022-2025年)》的通知 [EB/OL].(2022-03-21) [2023-02-02]. . |
General Office of Shenzhen Municipal People’s Government. Notice from the General Office of the Shenzhen Municipal People’s Government on the issuance of the ‘Shenzhen Action Plan to Promote the Construction of New Information Infrastructure (2022-2025)’ [EB/OL].(2022-03-21) [2023-02-02]. (in Chinese). | |
42 | SILVA C, JOHNSON W R, SOLIS E, et al. VTOL urban air mobility concept vehicles for technology development: AIAA-2018-3847[R]. Reston: AIAA, 2018. |
43 | FU M Y, ROTHFELD R, ANTONIOU C. Exploring preferences for transportation modes in an urban air mobility environment: Munich case study[J]. Transportation Research Record: Journal of the Transportation Research Board, 2019, 2673(10): 427-442. |
44 | SUNIL E, HOEKSTRA J, ELLERBROEK J, et al. Metropolis: Relating airspace structure and capacity for extreme traffic densities: hal-01168662[R]. Montreal: ICAO, 2015. |
45 | 中国民用航空局.民用航空使用空域办法[EB/OL], (2004-05-26)[2023-02-02]. . |
Civil Aviation Administration of China. Measures for the use of airspace by civil aviation[EB/OL]. (2004-05-26)[2023-02-02]. (in Chinese). | |
46 | 廖小罕, 黄耀欢, 徐晨晨. 面向无人机应用的低空空域资源研究探讨[J]. 地理学报, 2021, 76(11): 2607-2620. |
LIAO X H, HUANG Y H, XU C C. Views on the study of low-altitude airspace resources for UAV applications[J]. Acta Geographica Sinica, 2021, 76(11): 2607-2620 (in Chinese). | |
47 | SUNIL E, ELLERBROEK J, HOEKSTRA J, et al. Analysis of airspace structure and capacity for decentralized separation using fast-time simulations[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(1): 38-51. |
48 | BOSSON C, LAUDERDALE T A. Simulation evaluations of an autonomous urban air mobility network management and separation service: AIAA-2018-3365[R]. Reston: AIAA, 2018. |
49 | PRIMATESTA S, RIZZO A, LA COUR-HARBO A. Ground risk map for unmanned aircraft in urban environments[J]. Journal of Intelligent & Robotic Systems, 2020, 97(3): 489-509. |
50 | BIAN H Y, TAN Q C, ZHONG S Y, et al. Assessment of UAM and drone noise impact on the environment based on virtual flights[J]. Aerospace Science and Technology, 2021, 118: 106996. |
51 | ZHI Y Y, FU Z J, SUN X M, et al. Security and privacy issues of UAV: A survey[J]. Mobile Networks and Applications, 2020, 25(1): 95-101. |
52 | FAA. UTM Concept of operations Version 2.0 (UTM ConOps v2.0): 20591.2022[R]. Washington,D.C.: Office of NextGen,2022. |
53 | COLLINS C A, ROBERSON G T, HALE S A. FAA 14 CFR part 107 for commercial UAS and UAS as agriculture field equipment: A review for agriculture safety standards: ASABE Meeting-1800400[R]. St. Joseph: American Society of Agricultural and Biological Engineers, 2018. |
54 | 孔祥浩,张卓然,陆嘉伟,等.分布式电推进飞机电力系统研究综述[J].航空学报,2018,39(1):021651. |
KONG X H, ZHANG Z R, LU J W,et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018,39(1): 021651 (in Chinese). | |
55 | AVIATION J. Joby confirms revolutionary low noise footprint following NASA testing [EB/OL].(2022-05-10) [2023-02-02]. . |
56 | 小鹏汇天. 全球首个电动垂起飞行汽车正式发布 [EB/OL]. (2022-10-25)[2023-02-02]. . |
Huitian Xiaopeng.Aerospace Technology. The first electric hanging flying car is officially released. (2022-10-25)[2023-02-02]. (in Chinese). | |
57 | JOHNSON C. ICAO RPAS symposium: NASA RPAS operational and research activities:NASA-AFRC-E-DAA-TN46312[R].Washington, D.C.: NASA. 2017. |
58 | SOCIETY V F. eVTOL Aircraft directory[EB/OL]. (2022-12-25)[2023-02-02]. . |
59 | BAURANOV A, RAKAS J. Designing airspace for urban air mobility: A review of concepts and approaches[J]. Progress in Aerospace Sciences, 2021, 125: 100726. |
60 | RESEARCH M S. Are flying cars preparing for takeoff? [EB/OL] (2019-01-23)[2023-02-02]. . |
61 | 亿航. 亿航智能获得全球首个自动驾驶飞行器物流试运行许可 [EB/OL].(2020-05-27)[2023-02-02]. . |
EHang. EHang Intelligent obtained the world’s first autonomous aircraft logistics trial operation license[EB/OL].(2020-05-27)[2023-02-02]. (in Chinese). | |
62 | 中国民用航空局. 基于运行风险的无人机适航审定指导意见 [EB/OL]. (2019-01-25)[2023-02-02]. . |
Civil Aviation Administration of China. Guiding opinions on UAV airworthiness certification based on operational risks [EB/OL]. (2019-01-25)[2023-02-02]. (in Chinese). | |
63 | 小鹏汇天. 汇天大事件|星航资本完成对小鹏汇天的追加投资 [EB/OL].(2022-07-10)[2023-02-02]. . |
Huitian Xiaopeng. Big Huitian Events | Rockets Capital completed additional investment in Xiaopeng Huitian. [EB/OL].(2022-07-10)[2023-02-02]. (in Chinese). | |
64 | 小鹏汇天. 喜迎开门红 X2国内首获特许飞行证 [EB/OL].(2023-01-30)[2023-02-02]. . |
Huitian Xiaopeng. Happy start: X2 is the first domestic aircraft to obtain a chartered flight certificate. [EB/OL].(2023-01-30)[2023-02-02]. (in Chinese). | |
65 | 峰飞航空. 峰飞昆山研发制造基地正式启用,盛世龙载人飞行器获260架订单 [EB/OL].(2022-09-07)[2023-02-02]. . |
Aviation Fengfei. Fengfei Kunshan research and manufacturing base was officially opened, and Shengshilong manned aircraft received 260 orders. [EB/OL].(2022-09-07)[2023-02-02]. (in Chinese). | |
66 | 中国新闻网. 中国企业自主研发的5座纯电动力垂直起降载人航空器第二次试飞成功 [EB/OL].(2023-01-31)[2023-02-02]. . |
China News Network. The 5-seater pure electric powered vertical take-off and landing manned aircraft independently developed by a Chinese company successfully made its second test flight. [EB/OL].(2023-01-31)[2023-02-02]. (in Chinese). | |
67 | AVIATION J. Joby receives Part 135 Certificate from the FAA [EB/OL].(2022-05-26)[2023-02-02]. . |
68 | AVIATION J. Joby completes second stage of certification process [EB/OL] (2023-01-09)[2023-02-02]. . |
69 | VOLOCOPTER. Volocopter raises additional USD 182 million in second signing of Series E financing round [EB/OL].(2022-11-01)[2023-02-02]. . |
70 | AIRBUS. Airbus and ITA Airways partner to develop urban air mobility in Italy [EB/OL].(2022-04-27)[2023-02-02]. ,identifying%20strategic%20use%20cases%20for%20emission-free%20mobility%20solutions. |
71 | STRAUBINGER A, ROTHFELD R, SHAMIYEH M, et al. An overview of current research and developments in urban air mobility — Setting the scene for UAM introduction[J]. Journal of Air Transport Management, 2020, 87: 101852. |
72 | 峰飞航空. 峰飞全新载物EVTOL V2000CG型号审定申请获民航局受理 [EB/OL].(2022-09-29)[2023-02-02]. . |
Aviation Fengfei. Fengfei’s new cargo EVTOL V2000CG model approval application was accepted by the Civil Aviation Administration of China. [EB/OL].(2022-09-29)[2023-02-02]. (in Chinese). | |
73 | POLACZYK N, TROMBINO E, WEI P, et al. A review of current technology and research in urban on-demand air mobility applications: IBSN-97815, 10888746[R].Fairtax: The vertical Flight Society, 2019. |
74 | 中国民用航空局. 对十三届全国人大二次会议第6389号建议的协办意见 [EB/OL].(2019-06-25)[2023-02-02]. . |
Civil Aviation Administration of China. Opinions on co-organizing recommendations No. 6389 of the Second Session of the Thirteenth National People’s Congress. [EB/OL].(2019-06-25)[2023-02-02]. (in Chinese). | |
75 | AIRBUS. Vahana is an all-electric, single-seat, tilt-wing vehicle demonstrator that focused on advancing self-piloted, electric vertical take-off and landing (eVTOL) flight. [EB/OL].(2022-01-04)[2023-02-02]. . |
76 | JAUNT. Jaunt Air Mobility is changing the way we commute. [EB/OL]. (2020-10-30)[2023-02-02]. . |
77 | BETA. Beta Technologies ALIA-250C [EB/OL]. (2020-06-12)[2023-02-02]. . |
78 | 亿航. eHANG 216 [EB/OL]. (2018-07-12)[2023-02-02]. . |
EHang. eHANG 216 [EB/OL]. (2018-07-12)[2023-02-02]. (in Chinese). | |
79 | VASCIK P D, HANSMAN R J. Evaluation of key operational constraints affecting on-demand mobility for aviation in the los angeles basin: Ground infrastructure, air traffic control and noise: AIAA-2017-3084[R].Reston: AIAA, 2017. |
80 | VASCIK P D, HANSMAN R J, DUNN N S. Analysis of urban air mobility operational constraints[J]. Journal of Air Transportation, 2018, 26(4): 133-146. |
81 | VASCIK P D, HANSMAN R J. Scaling constraints for urban air mobility operations: Air traffic control, ground infrastructure, and noise: AIAA-2018-3849[R]. Reston: AIAA, 2018. |
82 | FADHIL D N. A GIS-based analysis for selecting ground infrastructure locations for urban air mobility [D].Manich: Technical University of Munich, 2018. |
83 | ROTHFELD R, BALAC M, PLOETNER K O, et al. Agent-based simulation of urban air mobility:AIAA-2018-3891[R]. Reston: AIAA, 2018. |
84 | 屈文秋. 基于四阶段法的城市空中交通(UAM)流量需求预测研究[D]. 广汉: 中国民用航空飞行学院, 2021. |
QU W Q. Demand forecast of urban air mobility (UAM) based on the four-stage method[D]. Guanghan: Civil Aviation Flight University of China, 2021 (in Chinese). | |
85 | EASA. Vertiports prototype technical specifications for the design of VFR vertiports for operation with manned VTOL-capable aircraft certified in the enhanced category [S]. Cologne. EASA, 2022. |
86 | FAA. Vertiport Design: Engineering Brief No. 105 [S]. Washington, D.C.: FAA, 2022. |
87 | ISO. Unmanned aircraft systems - Part 2: Operation of vertiports for vertical take-off and landing (VTOL) unmanned aircraft (UA): DS/ [S]. Geneva: ISO, 2022. |
88 | UBER. Here’s how Uber is designing skyports for future air taxis [EB/OL].(2020-05-11)[2023-02-02]. . |
89 | VASCIK P D, HANSMAN R J. Development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors: AIAA-2019-0526[R]. Reston: AIAA, 2019. |
90 | SHAO Q, SHAO M X, LU Y. Terminal area control rules and eVTOL adaptive scheduling model for multi-vertiport system in urban air Mobility[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103385. |
91 | HOSSEINI N, JAMAL H, HAQUE J, et al. UAV command and control, navigation and surveillance: A review of potential 5G and satellite systems[C]∥ 2019 IEEE Aerospace Conference. Piscataway: IEEE Press, 2019: 1-10. |
92 | LU Y C, XUE Z C, XIA G S, et al. A survey on vision-based UAV navigation[J]. Geo-Spatial Information Science, 2018, 21(1): 21-32. |
93 | 中国民用航空局空管行业管理办公室. 民用微轻小型无人驾驶航空器系统运行识别概念(暂行)[EB/OL].(2022-03-11)[2023-02-02]. . |
Civil Aviation Administration of China Air Traffic Control Industry Management Office. Civilian light and small unmanned aircraft system operation identification concept (provisional). [EB/OL].(2022-03-11)[2023-02-02]. (in Chinese). | |
94 | 钟若嵋, 文小航, 徐晨晨. 基于高分辨率模式的京津冀地区无人机航路风向风速模拟分析[J]. 地理科学进展, 2021, 40(9): 1528-1539. |
ZHONG R M, WEN X H, XU C C. Simulation and analysis of wind speed and direction of unmanned aerial vehicle route in the Beijing-Tianjin-Hebei region based on high resolution model[J]. Progress in Geography, 2021, 40(9): 1528-1539 (in Chinese). | |
95 | 程擎, 伍瀚宇, 吉鹏, 等. 民用无人机反制技术及应用场景分析[J]. 电讯技术, 2022, 62(3): 389-398. |
CHENG Q, WU H Y, JI P, et al. Civilian UAV countermeasures and application scene analysis[J]. Telecommunication Engineering, 2022, 62(3): 389-398 (in Chinese). | |
96 | COTTON W B, WING D J. Airborne trajectory management for urban air mobility:AIAA-2018-3874[R]. Reston: AIAA, 2018. |
97 | 全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报, 2020, 41(1): 023238. |
QUAN Q, LI G, BAI Y Q, et al. Low altitude UAV traffic management: An introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023238 (in Chinese). | |
98 | MOHAMED SALLEH M F B, LOW K H. Concept of operations (ConOps) for traffic management of unmanned aircraft systems (TM-UAS) in urban environment: AIAA-2017-0223[R]. Reston: AIAA-2017. |
99 | 中国民用航空局. 关于政协十三届全国委员会第四次会议第4967号(政治法律类359号)提案会办意见的函 [EB/OL].(2019-05-20)[2023-02-02]. . |
Civil Aviation Administration of China. Letter regarding the opinions on the handling of Proposal NO.4967 (Politics and Laws NO.359) of the 4th session of the 13th CPPCC National Committee[EB/OL]. (2019-05-20)[2023-02-02]. . | |
100 | 廖小罕, 徐晨晨, 岳焕印. 基于地理信息的无人机低空公共航路规划研究 [J]. 无人机, 2018, 19(2): 45-49. |
LIAO X H, Research on low-altitude public route planning for UAVs based on geographical information[J]. Ummanned Vehicles, 2018, 19(2): 45-49 (in Chinese). | |
101 | 中国民航局. 关于促进民用无人驾驶航空发展的指导意见(征求意见稿)[EB/OL].(2021-04-20)[2023-02-02]. . |
CAAC. Guiding opinions on promoting the development of civilian unmanned aviation (draft for comment) [EB/OL].(2021-04-20)[2023-02-02]. (in Chinese). | |
102 | XU C C, LIAO X H, YE H P, et al. Iterative construction of low-altitude UAV air route network in urban areas: Case planning and assessment[J]. Journal of Geographical Sciences, 2020, 30(9): 1534-1552. |
103 | IEEE. 1939. 1-2021-standard for a framework for structuring low altitude airspace for unmanned aerial vehicle (UAV) operations: 21566844 [S]. Piscataway: IEEE Press, 2021. |
104 | 中国民航局. 民航局关于公布首批民用无人驾驶航空试验基地( 试验区) 的通知 [EB/OL].(2020-10-21)[2023-02-02]. . |
CAAC. Notice from the Civil Aviation Administration of China on the announcement of the first batch of civil unmanned aviation test bases (test areas) (2020-10-21)[2023-02-02]. (in Chinese). | |
105 | 李安醍, 李诚龙, 武丁杰, 等. 结合跳点引导的无人机随机搜索避撞决策方法[J]. 航空学报, 2020, 41(8): 323726. |
LI A T, LI C L, WU D J, et al. Collision avoidance decision method for UAVs in random search combined with jump point guidance[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 323726 (in Chinese). | |
106 | 徐晨晨, 廖小罕, 岳焕印, 等. 基于改进蚁群算法的无人机低空公共航路构建方法[J]. 地球信息科学学报, 2019, 21(4): 570-579. |
XU C C, LIAO X H, YUE H Y, et al. Construction of a UAV low-altitude public air route based on an improved ant colony algorithm[J]. Journal of Geo-Information Science, 2019, 21(4): 570-579 (in Chinese). | |
107 | 徐晨晨, 叶虎平, 岳焕印, 等. 城镇化区域无人机低空航路网迭代构建的理论体系与技术路径[J]. 地理学报, 2020, 75[1]: 917-930. |
XU C C, YE H P, YUE H Y, et al. Iterative construction of UAV low-altitude air route network in an urbanized region: Theoretical system and technical roadmap[J]. Acta Geographica Sinica, 2020, 75[1]: 917-930 (in Chinese). | |
108 | NASA. Science of sound: NASA examines advanced air mobility noise [EB/OL].(2020-05-10)[2023-02-02]. . |
109 | RIMJHA M, HOTLE S, TRANI A, et al. Commuter demand estimation and feasibility assessment for Urban Air Mobility in Northern California[J]. Transportation Research Part A: Policy and Practice, 2021, 148: 506-524. |
110 | WINTER K, CATS O, MARTENS K, et al. A stated-choice experiment on mode choice in an era of free-floating carsharing and shared autonomous vehicles[C]∥. Transportation research board 96th annual meeting. Washington, D.C.: 2017: 01321. |
111 | CHEN Y S, ZHAO J W, LIU Y T. Development strategy of shared mobility for smart cities in the future[J]. Chinese Journal of Engineering Science, 2019, 21(3): 114. |
112 | 王中航, 王如松. 北京城市交通适应性管理: 以定制公交为例[J]. 现代城市研究, 2015, 30(3): 2-8. |
WANG Z H, WANG R S. Adaptive management of Beijing urban traffic: A case study of the customized transit bus service[J]. Modern Urban Research, 2015, 30(3): 2-8 (in Chinese). | |
113 | 时的科技. UAM立体交通之基础设施 [EB/OL]. (2022-03-26)[2023-02-02]. . |
TCABTECh. UAM three-dimensional transportation infrastructure[EB/OL]. (2022-03-26)[2023-02-02]. (in Chinese). | |
114 | JANG D S, IPPOLITO C A, SANKARARAMAN S, et al. Concepts of airspace structures and system analysis for UAS traffic flows for urban areas: AIAA-2017-0449[R]. Reston: AIAA, 2017. |
115 | XUE M. Urban air mobility conflict resolution: Centralized or decentralized?: AIAA-2020-3192[R]. Reston: AIAA, 2020. |
116 | SONG K, YEO H. Development of optimal scheduling strategy and approach control model of multicopter VTOL aircraft for urban air mobility (UAM) operation[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103181. |
117 | CLOTHIER R A, WALKER R A. Safety risk management of unmanned aircraft systems[M]∥ Handbook of Unmanned Aerial Vehicles. Berlin: Springer, 2015: 2229-2275. |
118 | AUTHORITY U C A. Guidance on the conduct of hazard identification, risk assessment and the production of safety cases (CAP 760) [EB/OL]. (2010-10-10)[2023-02-02].. |
119 | WACKWITZ K, BOEDECKER H. Safety risk assessment for uav operation [J]. Drone Industry Insights, Safe Airspace Integration Project, Part One, Hamburg, Germany, 2015: 31-53. |
120 | EDWARDS T E, WOLTER C, BRIDGES W, et al. Bow tie analysis of the effects of unmanned aircraft on air traffic control: AIAA-2021-2334[R]. Reston: AIAA, 2021. |
121 | YUNITA M, HADI G S, ISVARA Y, et al. Analysis of Vivaldi, rectangular, bow-tie, and quasi-yagi antenna performancefor S-band FMCW-SAR on UAV platform[J]. Journal of Unmanned System Technology, 2018, 5(3): 76-9. |
122 | KUCHAR J K. Safety analysis methodology for unmanned aerial vehicle (UAV) collision avoidance systems[J]. Proceedings of the 6th USA/Europe Air Traffic Management Research and Development Seminar. Montreal: ICAO, 2005: 30-39. |
123 | WEIBEL R, HANSMAN R J. An integrated approach to evaluating risk mitigation measures for UAV operational concepts in the NAS: AIAA-2005-6957[R]. Reston: AIAA, 2005. |
124 | ABDALLAH R, KOUTA R, SARRAF C, et al. Fault tree analysis for the communication of a fleet formation flight of UAVs[C]∥ 2017 2nd International Conference on System Reliability and Safety (ICSRS). Piscataway: IEEE Press, 2018: 202-206. |
125 | KLADIS G P, ECONOMOU J T, KNOWLES K, et al. Digraph matrix reliability analysis for fault assessment for A UAV platform application. A fault-tree analysis approach[C]∥ 2008 IEEE Vehicle Power and Propulsion Conference. Piscataway: IEEE Press, 2008: 1-6. |
126 | QIAN Y J, WEI Y L, KONG D Y, et al. Experimental investigation on motor noise reduction of unmanned aerial vhicles[J]. Applied Acoustics, 2021, 176: 107873. |
127 | SCHÄFFER B, PIEREN R, HEUTSCHI K, et al. Drone noise emission characteristics and noise effects on humans—A systematic review[J]. International Journal of Environmental Research and Public Health, 2021, 18(11): 5940. |
128 | LEE B, LEE J, PARK Y, et al. Privacy protection from unmanned aerial vehicle[J]. Journal of the Korea Institute of Information Security and Cryptology, 2016, 26(4): 1057-1071. |
129 | RICE S, TAMILSELVAN G, WINTER S R, et al. Public perception of UAS privacy concerns: A gender comparison[J]. Journal of Unmanned Vehicle Systems, 2018, 6[1]: 83-99. |
130 | AALMOES R, CHEUNG Y S, SUNIL E, et al. A conceptual third party risk model for personal and unmanned aerial vehicles[C]∥ 2015 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2015: 1301-1309. |
131 | MELNYK R, SCHRAGE D, VOLOVOI V, et al. A third-party casualty risk model for unmanned aircraft system operations[J]. Reliability Engineering & System Safety, 2014, 124: 105-116. |
132 | WASHINGTON A, CLOTHIER R A, SILVA J. A review of unmanned aircraft system ground risk models[J]. Progress in Aerospace Sciences, 2017, 95: 24-44. |
133 | CLOTHIER R A, WILLIAMS B P, HAYHURST K J. Modelling the risks remotely piloted aircraft pose to people on the ground[J]. Safety Science, 2018, 101: 33-47. |
134 | PANG B Z, TAN Q Y, RA T, et al. A risk-based UAS traffic network model for adaptive urban airspace management: AIAA-2020-2900[R]. Reston: AIAA, 2020. |
135 | ALIZADEHSALEHI S, YITMEN I, CELIK T, et al. The effectiveness of an integrated BIM/UAV model in managing safety on construction sites[J]. International Journal of Occupational Safety and Ergonomics, 2020, 26(4): 829-844. |
136 | LUM C, WAGGONER B. A risk based paradigm and model for unmanned aerial systems in the national airspace: AIAA-2011-1424[R]. Reston: AIAA, 2011. |
137 | LA COUR-HARBO A. Quantifying risk of ground impact fatalities for small unmanned aircraft[J]. Journal of Intelligent & Robotic Systems, 2019, 93(1): 367-384. |
138 | WEI-JUN P, JIA-YANG C, ZHI-WEI Z, et al. Lateral collision risk evaluation between unmanned aerial vehicle and manned aircraft in controlled airspace [J]. Computer and Modernization, 2020, (03): 1. |
139 | ZHANG Z Y, ZHANG J, WANG P, et al. Research on operation of UAVs in non-isolated airspace[J]. Computers, Materials & Continua, 2018, 57(1): 151-166. |
140 | GUAN X M, LYU R L, SHI H X, et al. A survey of safety separation management and collision avoidance approaches of civil UAS operating in integration national airspace system[J]. Chinese Journal of Aeronautics, 2020, 33(11): 2851-2863. |
141 | CHO J, YOON Y. How to assess the capacity of urban airspace: A topological approach using keep-in and keep-out geofence[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 137-149. |
142 | CHO J, YOON Y. Extracting the topology of urban airspace through graph abstraction[J]. Transportation Research Part C: Emerging Technologies, 2021, 127: 103116. |
143 | KIM N, YOON Y. Regionalization for urban air mobility application with analyses of 3D urban space and geodemography in San Francisco and New York[J]. Procedia Computer Science, 2021, 184: 388-395. |
144 | QUAN Q, LI M, FU R. Sky highway design for dense traffic[DB/OL]. arxiv preprint: 2010.09159, 2020. |
145 | ALIYARI M, ASHRAFI B, AYELE Y Z. Hazards identification and risk assessment for UAV-assisted bridge inspections[J]. Structure and Infrastructure Engineering, 2022, 18(3): 412-428. |
146 | BERGER. Urban air mobility-the rise of a new mode of transportation[EB/OL]. (2018-11-01)[2023-02-02]. . |
147 | DELOITTE. The future of mobility: What’s next? [EB/OL]. (2016-01-01)[2023-02-02]. . |
[1] | Qihui WU, Chao DONG, Ziye JIA, Can CUI, Simeng FENG, Fuhui ZHOU, Hua XIE. Networking and control mechanism for low-altitude intelligent networks [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28809-028809. |
[2] | ZHANG Honghai, ZOU Yiyuan, ZHANG Qiqian, LIU Hao. Future urban air mobility management: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 24638-024638. |
[3] | LI Anti, LI Chenglong, WU Dingjie, WEI Peng. Collision avoidance decision method for UAVs in random search combined with jump point guidance [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(8): 323726-323726. |
[4] | QUAN Quan, LI Gang, BAI Yiqin, FU Rao, LI Mengxin, KE Chenxu, CAI Kaiyuan. Low altitude UAV traffic management:An introductory overview and proposal [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 23238-023238. |
[5] | CHEN Weishi, LI Jing. Radar target detection in low-altitude airspace with spatial features [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(9): 3060-3068. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341