[1] MAXWELL J C, RAWSON R, WHITE H S. A treatise on electricity and magnetism[M]. Oxford:Clarendon Press, 1873. [2] LEBEDEV P. Experimental examination of light pressure[J]. Annalen der Physik, 1901, 6(433):1-26. [3] NICHOLS E F, HULL G F. The pressure due to radiation[J]. Proceedings of the American Academy of Arts and Sciences, 1903, 38(20):26-50. [4] ZIEBART M. Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape[J]. Journal of Spacecraft and Rockets, 2004, 41(5):840-848. [5] LI Z, ZIEBART M, BHATTARAI S, et al. Fast solar radiation pressure modelling with ray tracing and multiple reflections[J]. Advances in Space Research, 2018, 61(9):2352-2365. [6] KOPP G. Earthu2019 s incoming energy:The total solar irradiance[M]//Comprehensive Remote Sensing. Amsterdam:Elsevier, 2018:32-66. [7] KOPP G, LEAN J L. A new, lower value of total solar irradiance:Evidence and climate significance[J]. Geophysical Research Letters, 2011, 38(1):1-7. [8] MONTENBRUCK O, GILL E. Satellite orbits[M]. Berlin, Heidelberg:Springer, 2000. [9] LI Z, ZIEBART M, BHATTARAI S, et al. A shadow function model based on perspective projection and atmospheric effect for satellites in eclipse[J]. Advances in Space Research, 2019, 63(3):1347-1359. [10] ADHYA S, SIBTHORPE A, ZIEBART M, et al. Oblate earth eclipse state algorithm for low-earth-orbiting satellites[J]. Journal of Spacecraft and Rockets, 2004, 41(1):157-159. [11] STEIGENBERGER P, THOELERT S, MONTENBRUCK O. GNSS satellite transmit power and its impact on orbit determination[J]. Journal of Geodesy, 2018, 92(6):609-624. [12] ZIEBART M, DARE P. Analytical solar radiation pressure modelling for GLONASS using a pixel array[J]. Journal of Geodesy, 2001, 75(11):587-599. [13] ZIEBART M, ADHYA S, SIBTHORPE A, et al. Combined radiation pressure and thermal modelling of complex satellites:Algorithms and on-orbit tests[J]. Advances in Space Research, 2005, 36(3):424-430. [14] ADHYA S, ZIEBART M, SIBTHORPE A, et al. Thermal force modeling for precise prediction and determination of spacecraft orbits[J]. Navigation, 2005, 52(3):131-144. [15] ADHYA S. Thermal re-radiation force modelling for the precise prediction and determination of spacecraft orbits[D]. London:University College London, 2005 [16] SIDOROV D, DACH R, POLLE B, et al. Adopting the empirical CODE orbit model to Galileo satellites[J]. Advances in Space Research, 2020, 66(12):2799-2811. [17] DARUGNA F, STEIGENBERGER P, MONTENBRUCK O, et al. Ray-tracing solar radiation pressure modeling for QZS-1[J]. Advances in Space Research, 2018, 62(4):935-943. [18] FLIEGEL H F, GALLINI T E, SWIFT E R. Global positioning system radiation force model for geodetic applications[J]. Journal of Geophysical Research, 1992, 97(B1):559. [19] BAR-SEVER Y, KUANG D. New empirically-derived solar radiation pressure model for GPS satellites during eclipse seasons[R]. IPN Progress Report, 2005, 42(159):1-4. [20] BAR-SEVER Y, KUANG D. New empirically-derived solar radiation pressure model for GPS satellites[R]. IPN Progress Report, 2004. [21] SIBTHORPE A, WEISS J, HARVEY N, et al. Empirical modelling of solar radiation pressure forces affecting GPS satellites[R]. Washington, D.C.:NASA, 2010. [22] SIBOIS A, SELLE C, DESAI S, et al. GSPM13:An updated empirical model for solar radiation pressure forces acting on GPS satellites[C]//IGS Workshop, 2014. [23] SIBTHORPE A, BERTIGER W, DESAI S D, et al. An evaluation of solar radiation pressure strategies for the GPS constellation[J]. Journal of Geodesy, 2011, 85(8):505-517. [24] BEUTLER G, BROCKMANN E. Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS):Theory and initial results[J]. Manuscripta Geodaetica, 1994, 19(6):367-386. [25] COLOMBO O L. The dynamics of global positioning system orbits and the determination of precise ephemerides[J]. Journal of Geophysical Research, 1989, 94(B7):9167. [26] ARNOLD D, MEINDL M, BEUTLER G, et al. CODE's new solar radiation pressure model for GNSS orbit determination[J]. Journal of Geodesy, 2015, 89(8):775-791. [27] PRANGE L, BEUTLER G, DACH R, et al. An empirical solar radiation pressure model for satellites moving in the orbit-normal mode[J]. Advances in Space Research, 2020, 65(1):235-250. [28] INEICHEN D, BEUTLER G, HUGENTOBLER U. Sensitivity of GPS and GLONASS orbits with respect to resonant geopotential parameters[J]. Journal of Geodesy, 2003, 77(7):478-486. [29] MARSHALL J A, LUTHCKE S B. Modeling radiation forces acting on Topex/Poseidon for precision orbit determination[J]. Journal of Spacecraft and Rockets, 1994, 31(1):99-105. [30] ROSBOROUGH G W, ANTREASIAN P G. Radiation forces modeling for the Topex/Poseidon spacecraft[C]//Astrodynamics Conference, 1990. [31] CERRI L, BERTHIAS J P, BERTIGER W I, et al. Precision orbit determination standards for the Jason series of altimeter missions[J]. Marine Geodesy, 2010, 33(S1):379-418. [32] ZELENSKY N P, LEMOINE F G, ZIEBART M, et al. DORIS/SLR POD modeling improvements for Jason-1 and Jason-2[J]. Advances in Space Research, 2010, 46(12):1541-1558. [33] RODRIGUEZ-SOLANO C J, HUGENTOBLER U, STEIGENBERGER P. Adjustable box-wing model for solar radiation pressure impacting GPS satellites[J]. Advances in Space Research, 2012, 49(7):1113-1128. [34] MONTENBRUCK O, STEIGENBERGER P, HUGENTOBLER U. Enhanced solar radiation pressure modeling for Galileo satellites[J]. Journal of Geodesy, 2015, 89(3):283-297. [35] BHATTARAI S, ZIEBART M, ALLGEIER S, et al. Demonstrating developments in high-fidelity analytical radiation force modelling methods for spacecraft with a new model for GPS IIR/IIR-M[J]. Journal of Geodesy, 2019, 93(9):1515-1528. [36] TAN B F, YUAN Y B, ZHANG B C, et al. A new analytical solar radiation pressure model for current BeiDou satellites:IGGBSPM[J]. Scientific Reports, 2016, 6:32967. [37] 毛悦, 宋小勇, 王维, 等. IGSO姿态控制模式切换期间定轨策略研究[J]. 武汉大学学报·信息科学版, 2014, 39(11):1352-1356. MAO Y, SONG X Y, WANG W, et al. IGSO satellite orbit determining strategy analysis with the yaw-steering and orbit-normal attitude control mode switching[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11):1352-1356 (in Chinese). [38] LI X J, HU X G, GUO R, et al. Orbit and positioning accuracy for new generation Beidou satellites during the earth eclipsing period[J]. Journal of Navigation, 2018, 71(5):1069-1087. [39] 郭靖. 姿态、光压和函数模型对导航卫星精密定轨影响的研究[D]. 武汉:武汉大学, 2014. GUO J. The impacts of attitude, solar radiation and function model on precise orbit determination for GNSS satellites[D]. Wuhan:Wuhan University, 2014 (in Chinese). [40] 郭睿, 周建华, 胡小工, 等. 北斗IGSO卫星姿态零偏航状态下精密定轨[J]. 测绘学报, 2018, 47(S1):18-27. GUO R, ZHOU J H, HU X G, et al. Precise orbit determination for the BDS IGSO satellites under the yaw-steering mode[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(S1):18-27 (in Chinese). [41] 毛悦, 宋小勇, 胡小工, 等. 北斗卫星轨道预报精度分析及改进[J]. 测绘科学技术学报, 2017, 34(2):124-129, 134. MAO Y, SONG X Y, HU X G, et al. Orbit prediction accuracy analysis and improvement method for BeiDou satellites[J]. Journal of Geomatics Science and Technology, 2017, 34(2):124-129, 134 (in Chinese). [42] DILSSNER F. A note on the yaw attitude modeling of BeiDou IGSO-6[R/OL]. (2017-11-20)[2022-05-08]. ht-tp://navigation-office.esa.int/attachments_24576369_1_BeiDou_IGSO-6_Yaw_Modeling.pdf. [43] 刘宇玺, 贾小林, 阮仁桂. 北斗系统IGSO卫星新姿态控制模式下定轨精度分析[J]. 大地测量与地球动力学, 2017, 37(6):614-617. LIU Y X, JIA X L, RUAN R G. Beidou IGSO satellite orbit determination precision analysis based on new attitude control mode[J]. Journal of Geodesy and Geodynamics, 2017, 37(6):614-617 (in Chinese). [44] 杨宇飞, 杨元喜, 胡小工, 等. 北斗三号卫星两种定轨模式精度比较分析[J]. 测绘学报, 2019, 48(7):831-839. YANG Y F, YANG Y X, HU X G, et al. Comparison and analysis of two orbit determination methods for BDS-3 satellites[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7):831-839 (in Chinese). [45] 蔡洪亮, 孟轶男, 耿涛, 等. 北斗三号卫星星地星间联合精密定轨初步结果[J]. 武汉大学学报·信息科学版, 2020, 45(10):1493-1500. CAI H L, MENG Y N, GENG T, et al. Initial results of precise orbit determination using satellite-ground and inter-satellite link observations for BDS-3 satellites[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10):1493-1500 (in Chinese). [46] 李晓杰, 刘晓萍, 祖安然, 等. 基本导航模式下BDS-3卫星地影期间的定轨精度分析[J]. 武汉大学学报·信息科学版, 2020, 45(6):854-861. LI X J, LIU X P, ZU A R, et al. Orbit accuracy for BDS-3 satellites during the earth eclipsing period in basic navigation mode[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6):854-861 (in Chinese). [47] ZHAO Q, WANG X, HU X, et al. The solar radiation pressure modelling and parameter analysis for BeiDou satellites[C]//IGS workshop, 2017. [48] LIU J H, GU D F, JU B, et al. A new empirical solar radiation pressure model for BeiDou GEO satellites[J]. Advances in Space Research, 2016, 57(1):234-244. [49] 彭汉兵, 杨元喜, 王刚. 不同经验太阳光压模型对于北斗卫星定轨的适用性分析[J]. 测绘科学技术学报, 2017, 34(4):347-352. PENG H B, YANG Y X, WANG G. Application analysis of different empirical solar radiation models for orbit determination of BDS satellites[J]. Journal of Geomatics Science and Technology, 2017, 34(4):347-352 (in Chinese). [50] 鞠冰, 昌虓, 谷德峰, 等. CODE新光压模型对北斗混合导航星座精密轨道确定的影响[J]. 国防科技大学学报, 2018, 40(1):86-92. JU B, CHANG X, GU D F, et al. Analysis of CODE's new solar radiation pressure model on precise orbit determination for mixed-type BeiDou constellation[J]. Journal of National University of Defense Technology, 2018, 40(1):86-92 (in Chinese). [51] 毛悦, 宋小勇, 贾小林, 等. 北斗卫星ECOM光压模型参数选择策略分析[J]. 测绘学报, 2017, 46(11):1812-1821. MAO Y, SONG X Y, JIA X L, et al. Analysis about parameters selection strategy of ECOM solar radiation pressure model for BeiDou satellites[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11):1812-1821 (in Chinese). [52] 李冉, 胡小工, 唐成盼, 等. 北斗卫星导航系统混合星座的光压摄动建模和精度分析[J]. 武汉大学学报·信息科学版, 2018, 43(7):1063-1070. LI R, HU X G, TANG C P, et al. Modeling and precision analysis of solar radiation pressure for BDS hybrid constellation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7):1063-1070 (in Chinese). [53] WANG C, GUO J, ZHAO Q L, et al. Solar radiation pressure models for BeiDou-3 I2-S satellite:Comparison and augmentation[J]. Remote Sensing, 2018, 10(1):118. [54] 戴小蕾. 基于平方根信息滤波的GNSS导航卫星实时精密定轨理论与方法[D]. 武汉:武汉大学, 2016. DAI X L. Real-time precise GNSS satellite orbit determination using the SRIF method:Theory and implemencation[D]. Wuhan:Wuhan University, 2016 (in Chinese). [55] DAI X L, GE M R, LOU Y D, et al. Estimating the yaw-attitude of BDS IGSO and MEO satellites[J]. Journal of Geodesy, 2015, 89(10):1005-1018. [56] 曾添, 贾小林, 隋立芬, 等. 北斗三号组网卫星数据质量分析及单系统定轨精度初步评估[J]. 大地测量与地球动力学, 2019, 39(11):1165-1170. ZENG T, JIA X L, SUI L F, et al. Initial evaluation of Beidou-3 satellite data quality and single system precise orbit determination[J]. Journal of Geodesy and Geodynamics, 2019, 39(11):1165-1170 (in Chinese). [57] 陈秋丽, 杨慧, 陈忠贵, 等. 北斗卫星太阳光压解析模型建立及应用[J]. 测绘学报, 2019, 48(2):169-175. CHEN Q L, YANG H, CHEN Z G, et al. Solar radiation pressure modeling and application of BDS satellite[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):169-175 (in Chinese). [58] 王晨. 北斗导航卫星光压模型构建与精化研究[D]. 武汉:武汉大学, 2019. WANG C. Solar radiation pressure modelling for BeiDou navigation satellites[D]. Wuhan:Wuhan University, 2019 (in Chinese). [59] XIA F Y, YE S R, CHEN D Z, et al. Advancing the solar radiation pressure model for BeiDou-3 IGSO satellites[J]. Remote Sensing, 2022, 14(6):1460. [60] YAN X Y, LIU C C, HUANG G W, et al. A priori solar radiation pressure model for BeiDou-3 MEO satellites[J]. Remote Sensing, 2019, 11(13):1605. [61] 赵辉, 金双根, 罗鹏. 不同光压模型对北斗IGSO与MEO卫星定轨的适用性分析[J]. 大地测量与地球动力学, 2022, 42(1):9-14. ZHAO H, JIN S G, LUO P. Applicability of different solar radiation pressure models for Beidou IGSO and MEO satellites orbit determination[J]. Journal of Geodesy and Geodynamics, 2022, 42(1):9-14 (in Chinese). [62] LI Z, ZIEBART M, GREY S, et al. Earth radiation pressure modelling for BeiDou IGSO Satellites[C]//China Satellite Navigation Conference, 2017. [63] 赵群河, 王小亚, 胡小工, 等. 北斗卫星地球辐射压摄动建模研究[J]. 天文学进展, 2018, 36(1):68-80. ZHAO Q H, WANG X Y, HU X G, et al. Research on the earth radiation pressure modelling for Beidou satellites[J]. Progress in Astronomy, 2018, 36(1):68-80 (in Chinese). [64] ZIEBART M, SPRINGER T, FLOHRER C, et al. The GPS-SLR bias:Dynamics, attitude and current experiments[C]//International Technical Laser Workshop on SLR Tracking of GNSS Constellations, 2009. [65] LI Z, ZIEBART M. Uncertainty analysis on direct solar radiation pressure modelling for GPS IIR and Galileo FOC satellites[J]. Advances in Space Research, 2020, 66(4):963-973. [66] LI Z. Space vehicle radiation pressure modelling:A demonstration on Galileo satellites in GNSS[D]. London:University College London, 2019. |