ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (10): 527333-527333.doi: 10.7527/S1000-6893.2022.27333
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
XING Yufeng, LI Gen, YUAN Ye
Received:
2022-04-28
Revised:
2022-05-26
Published:
2022-06-17
Supported by:
CLC Number:
XING Yufeng, LI Gen, YUAN Ye. A review of closed-form analytical solution methods for eigenvalue problems of rectangular plates[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527333-527333.
[1] NAVIER C L M H. Extrait des recherches sur la flexion des plans elastiques[J]. Bulletin des Sciences par la Société Philomathique de Paris, 1823, 5:95-102 [2] NAVIER C L M H. Résumé des leçons données `a l'école royale des ponts et chaussées sur l'application de la mécanique `a l'établissement des constructions et des machines[M]. Didot, 1826. [3] NAVIER C L M H. Remarques sur l'Article de M. Poisson, insére dans le Cahier d'août[J]. Annales de Chimie et de Physique, 1829, 39:145-151. [4] LEVY M. Sur L'équilibre élastique d'une plaque rectangulaire[J]. Comptes Rendus de l'Académie des Sciences, 1899, 129:535-539. [5] LEVY M. Mémoire sur la théorie des plaques élastique planes[J]. Journal de Mathématiques Pures et Appliquées, 1877, 30:219-306. [6] MINDLIN R D, SCHACKNOW A, DERESIEWICZ H. Flexural vibrations of rectangular plates[J]. Journal of Applied Mechanics, 1956, 23(3):430-436. [7] REDDY J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4):745-752. [8] BHIMARADDI A, STEVENS L K. A higher order theory for free vibration of orthotropic, homogeneous, and laminated rectangular plates[J]. Journal of Applied Mechanics, 1984, 51(1):195-198. [9] LU P, ZHANG P Q, LEE H P, et al. Non-local elastic plate theories[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2007, 463(2088):3225-3240. [10] AGHABABAEI R, REDDY J N. Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates[J]. Journal of Sound and Vibration, 2009, 326(1-2):277-289. [11] RAGHU P, PREETHI K, RAJAGOPAL A, et al. Nonlocal third-order shear deformation theory for analysis of laminated plates considering surface stress effects[J]. Composite Structures, 2016, 139:13-29. [12] WANG C M. Natural frequencies formula for simply supported mindlin plates[J]. Journal of Vibration and Acoustics, 1994, 116(4):536-540. [13] WANG C M, KITIPORNCHAI S, REDDY J N. Relationship between vibration frequencies of reddy and Kirchhoff polygonal plates with simply supported edges[J]. Journal of Vibration and Acoustics, 2000, 122(1):77-81. [14] SRINIVAS S, RAO A K. Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates[J]. International Journal of Solids and Structures, 1970, 6(11):1463-1481. [15] SRINIVAS S, JOGA RAO C V, RAO A K. An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates[J]. Journal of Sound and Vibration, 1970, 12(2):187-199. [16] WITTRICK W H. Analytical, three-dimensional elasticity solutions to some plate problems, and some observations on Mindlin's plate theory[J]. International Journal of Solids and Structures, 1987, 23(4):441-464. [17] FAN J R, YE J Q. An exact solution for the statics and dynamics of laminated thick plates with orthotropic layers[J]. International Journal of Solids and Structures, 1990, 26(5-6):655-662. [18] HOSSEINI-HASHEMI S, SALEHIPOUR H, ATASHIPOUR S R, et al. On the exact in-plane and out-of-plane free vibration analysis of thick functionally graded rectangular plates:Explicit 3-D elasticity solutions[J]. Composites Part B:Engineering, 2013, 46:108-115. [19] 卿光辉, 张小欢. 对边简支对边滑支三维矩形层合板的精确解[J]. 科学技术与工程, 2016, 16(3):1-5, 21. QING G H, ZHANG X H. Exact solutions for rectangular laminates in cylindrical bending by three-dimensional state space approach[J]. Science Technology and Engineering, 2016, 16(3):1-5, 21 (in Chinese). [20] BERT C W, MALIK M. Frequency equations and modes of free vibrations of rectangular plates with various edge conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 1994, 208(5):307-319. [21] HASHEMI S H, ARSANJANI M. Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates[J]. International Journal of Solids and Structures, 2005, 42(3-4):819-853. [22] HOSSEINI-HASHEMI S, FADAEE M, ROKNI DAMAVANDI TAHER H. Exact solutions for free flexural vibration of Lévy-type rectangular thick plates via third-order shear deformation plate theory[J]. Applied Mathematical Modelling, 2011, 35(2):708-727. [23] HOSSEINI-HASHEMI S, ZARE M, NAZEMNEZHAD R. An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity[J]. Composite Structures, 2013, 100:290-299. [24] HOSSEINI-HASHEMI S, KERMAJANI M, NAZEMNEZHAD R. An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory[J]. European Journal of Mechanics-A/Solids, 2015, 51:29-43. [25] HOSSEINI-HASHEMI S, FADAEE M, ATASHIPOUR S R. A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates[J]. International Journal of Mechanical Sciences, 2011, 53(1):11-22. [26] HOSSEINI-HASHEMI S, TAHER H R D, AKHAVAN H, et al. Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory[J]. Applied Mathematical Modelling, 2010, 34(5):1276-1291. [27] HOSSEINI-HASHEMI S, FADAEE M, ATASHIPOUR S R. Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure[J]. Composite Structures, 2011, 93(2):722-735. [28] ZARE M, NAZEMNEZHAD R, HOSSEINI-HASHEMI S. Natural frequency analysis of functionally graded rectangular nanoplates with different boundary conditions via an analytical method[J]. Meccanica, 2015, 50(9):2391-2408. [29] BAFERANI A H, SAIDI A R, EHTESHAMI H. Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation[J]. Composite Structures, 2011, 93(7):1842-1853. [30] REZAEI A S, SAIDI A R. Exact solution for free vibration of thick rectangular plates made of porous materials[J]. Composite Structures, 2015, 134:1051-1060. [31] XIANG Y. Vibration of rectangular Mindlin plates resting on non-homogenous elastic foundations[J]. International Journal of Mechanical Sciences, 2003, 45(6-7):1229-1244. [32] ZHANG L W, SONG Z G, LIEW K M. State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory[J]. Composite Structures, 2015, 134:989-1003. [33] XING Y F, XIANG W. Analytical solution methods for eigenbuckling of symmetric cross-ply composite laminates[J]. Chinese Journal of Aeronautics, 2017, 30(1):282-291. [34] GORMAN D J. Exact solutions for the free in-plane vibration of rectangular plates with two opposite edges simply supported[J]. Journal of Sound and Vibration, 2006, 294(1-2):131-161. [35] HOSSEINI HASHEMI S, ATASHIPOUR S R, FADAEE M. An exact analytical approach for in-plane and out-of-plane free vibration analysis of thick laminated transversely isotropic plates[J]. Archive of Applied Mechanics, 2012, 82(5):677-698. [36] XING Y F, LI G, YUAN Y. A review of the analytical solution methods for the eigenvalue problems of rectangular plates[J]. International Journal of Mechanical Sciences, 2022, 221:107171. [37] XING Y F, LIU B. New exact solutions for free vibrations of rectangular thin plates by symplectic dual method[J]. Acta Mechanica Sinica, 2008, 25(2):265-270. [38] XING Y F, LIU B. New exact solutions for free vibrations of thin orthotropic rectangular plates[J]. Composite Structures, 2009, 89(4):567-574. [39] XING Y F, LIU B. Exact solutions for the free in-plane vibrations of rectangular plates[J]. International Journal of Mechanical Sciences, 2009, 51(3):246-255. [40] LIU B, XING Y F. Exact solutions for free in-plane vibrations of rectangular plates[J]. Acta Mechanica Solida Sinica, 2011, 24(6):556-567. [41] LIU B, XING Y F. Comprehensive exact solutions for free in-plane vibrations of orthotropic rectangular plates[J]. European Journal of Mechanics-A/Solids, 2011, 30(3):383-395. [42] 徐腾飞, 邢誉峰. 弹性地基上矩形薄板自由振动的精确解[J]. 工程力学, 2014, 31(5):43-48. XU T F, XING Y F. Exact solutions for free vibrations of rectangular thin plates on the winkler foundation[J]. Engineering Mechanics, 2014, 31(5):43-48 (in Chinese). [43] 邢誉峰, 徐腾飞. 双参数弹性地基上正交各向异性矩形薄板自由振动的精确解[J]. 振动工程学报, 2014, 27(2):269-274. XING Y F, XU T F. Exact solutions for free vibrations of orthotropic rectangulr thin plates on elastic foundation of two parameters[J]. Journal of Vibration Engineering, 2014, 27(2):269-274 (in Chinese). [44] XING Y F, XU T F. Solution methods of exact solutions for free vibration of rectangular orthotropic thin plates with classical boundary conditions[J]. Composite Structures, 2013, 104:187-195. [45] 汪星明, 刘波, 邢誉峰. 正交各向异性矩形薄板稳定问题的直接解法[J]. 北京航空航天大学学报, 2010, 36(8):949-952. WANG X M, LIU B, XING Y F. Separation of variables solutions of stability problems of orthotropic rectangular thin plates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8):949-952 (in Chinese). [46] XING Y F, LIU B. Closed form solutions for free vibrations of rectangular Mindlin plates[J]. Acta Mechanica Sinica, 2009, 25(5):689-698. [47] XING Y F, LIU B. Characteristic equations and closed-form solutions for free vibrations of rectangular mindlin plates[J]. Acta Mechanica Solida Sinica, 2009, 22(2):125-136. [48] LIU B, XING Y F. Exact solutions for free vibrations of orthotropic rectangular Mindlin plates[J]. Composite Structures, 2011, 93(7):1664-1672. [49] LIU B, XING Y F, REDDY J N. Exact compact characteristic equations and new results for free vibrations of orthotropic rectangular Mindlin plates[J]. Composite Structures, 2014, 118:316-321. [50] XING Y F, XIANG W. Closed-form solutions for eigenbuckling of rectangular mindlin plate[J]. International Journal of Structural Stability and Dynamics, 2016, 16(8):1550079. [51] XU T F, XING Y F. Closed-form solutions for free vibration of rectangular FGM thin plates resting on elastic foundation[J]. Acta Mechanica Sinica, 2016, 32(6):1088-1103. [52] XING Y F, WANG Z K, XU T F. Closed-form analytical solutions for free vibration of rectangular functionally graded thin plates in thermal environment[J]. International Journal of Applied Mechanics, 2018, 10(3):1850025. [53] XING Y F, WANG Z K. Closed form solutions for thermal buckling of functionally graded rectangular thin plates[J]. Applied Sciences, 2017, 7(12):1256. [54] MURMU T, PRADHAN S C. Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model[J]. Physica E:Low-Dimensional Systems and Nanostructures, 2009, 41(8):1628-1633. [55] LIU B, XING Y F, QATU M S, et al. Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells[J]. Composite Structures, 2012, 94(2):484-493. [56] XING Y F, LIU B, XU T F. Exact solutions for free vibration of circular cylindrical shells with classical boundary conditions[J]. International Journal of Mechanical Sciences, 2013, 75:178-188. [57] BAHRAMI A, BAHRAMI M N, ILKHANI M R. Comments on "New exact solutions for free vibrations of thin orthotropic rectangular plates"[J]. Composite Structures, 2014, 107:745-746. [58] XING Y F, XU T F, LIU B. Comments to comments on "New exact solutions for free vibrations of thin orthotropic rectangular plates"[J]. Composite Structures, 2014, 107:747. [59] XING Y F, SUN Q Z, LIU B, et al. The overall assessment of closed-form solution methods for free vibrations of rectangular thin plates[J]. International Journal of Mechanical Sciences, 2018, 140:455-470. [60] WANG Z K, XING Y F, SUN Q Z. Highly accurate closed-form solutions for the free in-plane vibration of rectangular plates with arbitrary homogeneous boundary conditions[J]. Journal of Sound and Vibration, 2020, 470:115166. [61] WANG Z K, XING Y F, SUN Q Z, et al. Highly accurate closed-form solutions for free vibration and eigenbuckling of rectangular nanoplates[J]. Composite Structures, 2019, 210:822-830. [62] XING Y F, WANG Z K. An improved separation-of-variable method for the free vibration of orthotropic rectangular thin plates[J]. Composite Structures, 2020, 252:112664. [63] XING Y F, WANG Z K. An extended separation-of-variable method for the free vibration of orthotropic rectangular thin plates[J]. International Journal of Mechanical Sciences, 2020, 182:105739. [64] YUAN Y, XING Y F. An extended separation-of-variable method for eigenbuckling of orthotropic rectangular thin plates[J]. Composite Structures, 2021, 259:113239. [65] LI G, XING Y F, WANG Z K. An extended separation-of-variable method for free vibration of rectangular mindlin plates[J]. International Journal of Structural Stability and Dynamics, 2021, 21(11):2150154. [66] LI G, XING Y F. An extended separation-of-variable method for free vibration of rectangular Reddy plates[J]. Composite Structures, 2022, 289:115469. [67] LI G, XING Y F, WANG Z K. Closed-form solutions for free vibration of rectangular nonlocal Mindlin plates with arbitrary homogeneous boundary conditions[J]. Composites Part C:Open Access, 2021, 6:100193. [68] WANG Z K, XING Y F, LI G. Closed-form solutions for the free vibrations of three-dimensional orthotropic rectangular plates[J]. International Journal of Mechanical Sciences, 2021, 199:106398. [69] WANG Z K, XING Y F. An extended separation-of-variable method for free vibrations of orthotropic rectangular thin plate assemblies[J]. Thin-Walled Structures, 2021, 169:108491. [70] KANTOROVICH L V, KRYLOV V I. Approximate methods of higher analysis[M]. New York:Interscience, 1958. [71] LAURA P A A, CORTÍNEZ V H. Optimization of the kantorovich method when solving eigenvalue problems[J]. Journal of Sound and Vibration, 1988, 122(2):396-398. [72] CORTINEZ V H, LAURA P A A. Further optimization of the Kantorovich method when applied to vibrations problems[J]. Applied Acoustics, 1988, 25(3):217-221. [73] BHAT R B, LAURA P A A, GUTIERREZ R G, et al. Numerical experiments on the determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness[J]. Journal of Sound and Vibration, 1990, 138(2):205-219. [74] CORTINEZ V H, LAURA P A A. Analysis of vibrating rectangular plates of discontinuously varying thickness by means of the Kantorovich extended method[J]. Journal of Sound and Vibration, 1990, 137(3):457-461. [75] SONZOGNI V E, IDELSOHN S R, LAURA P A A, et al. Free vibrations of rectangular plates of exponentially varying thickness and with a free edge[J]. Journal of Sound and Vibration, 1990, 140(3):513-522. [76] CORTINEZ V H, LAURA P A A. Vibrations of non-homogeneous rectangular membranes[J]. Journal of Sound and Vibration, 1992, 156(2):217-225. [77] KERR A D. An extension of the Kantorovich method[J]. Quarterly of Applied Mathematics, 1968, 26(2):219-229. [78] KERR A D. An extended Kantorovich method for the solution of eigenvalue problems[J]. International Journal of Solids and Structures, 1969, 5(6):559-572. [79] KERR A D, ALEXANDER H. An application of the extended Kantorovich method to the stress analysis of a clamped rectangular plate[J]. Acta Mechanica, 1968, 6(2-3):180-196. [80] DALAEI M, KERR A D. Natural vibration analysis of clamped rectangular orthotropic plates[J]. Journal of Sound and Vibration, 1996, 189(3):399-406. [81] JONES R, MILNE B J. Application of the extended Kantorovich method to the vibration of clamped rectangular plates[J]. Journal of Sound and Vibration, 1976, 45(3):309-316. [82] BERCIN A. Free vibration solution for clamped orthotropic plates using the Kantorovich method[J]. Journal of Sound and Vibration, 1996, 196(2):243-247. [83] BHAT R B, SINGH J, MUNDKUR G. Plate characteristic functions and natural frequencies of vibration of plates by iterative reduction of partial differential equation[J]. Journal of Vibration and Acoustics, 1993, 115(2):177-181. [84] SAKATA T, TAKAHASHI K, BHAT R B. Natural frequencies of orthotropic rectangular plates obtained by iterative reduction of the partial differential equation[J]. Journal of Sound and Vibration, 1996, 189(1):89-101. [85] RAJALINGHAM C, BHAT R B, XISTRIS G D. Closed form approximation of vibration modes of rectangular cantilever plates by the variational reduction method[J]. Journal of Sound and Vibration, 1996, 197(3):263-281. [86] RAJALINGHAM C, BHAT R B, XISTRIS G D. Vibration of rectangular plates by reduction of the plate partial differential equation into simultaneous ordinary differential equations[J]. Journal of Sound and Vibration, 1997, 203(1):169-180. [87] 钟阳, 周福霖, 张永山. 弹性地基上四边自由矩形薄板振动分析的Kantorovich法[J]. 振动与冲击, 2007, 26(3):33-36, 155. ZHONG Y, ZHOU F L, ZHANG Y S. Vibration analysis of a thin plate on winkler foundation with completely free boundary by Kantorovich method[J]. Journal of Vibration and Shock, 2007, 26(3):33-36, 155 (in Chinese). [88] CHANG D C, WANG G, WERELEY N M. Analysis and applications of extended kantorovich-Krylov method[J]. Applicable Analysis, 2003, 82(7):713-740. [89] FALLAH A, AGHDAM M M, KARGARNOVIN M H. Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method[J]. Archive of Applied Mechanics, 2013, 83(2):177-191. [90] MOROZOV E V, LOPATIN A V. Fundamental frequency of the CCCF composite sandwich plate[J]. Composite Structures, 2010, 92(11):2747-2757. [91] SHUFRIN I, EISENBERGER M. Stability and vibration of shear deformable plates:First order and higher order analyses[J]. International Journal of Solids and Structures, 2005, 42(3-4):1225-1251. [92] WEBBER J P H. An iterative technique for minimising a double integral with applications in elasticity[J]. The Journal of the Royal Aeronautical Society, 1967, 71(680):573-575. [93] WEBBER J P H. On the extension of the Kantorovich method[J]. The Aeronautical Journal, 1970, 74(710):146-149. [94] 金焱, 袁驷. 延拓Kantorovich法解薄扁壳弯曲问题[J]. 土木工程学报, 1998, 31(4):38-46. JIN Y, YUAN S. Computation of bending problems of thin shallow shells using the extended kantorovich method[J]. China Civil Engineering Journal, 1998, 31(4):38-46 (in Chinese). [95] YUAN S, JIN Y, WILLIAMS F W. Bending analysis of mindlin plates by extended kantorovich method[J]. Journal of Engineering Mechanics, 1998, 124(12):1339-1345. [96] YUAN S, JIN Y. Computation of elastic buckling loads of rectangular thin plates using the extended Kantorovich method[J]. Computers & Structures, 1998, 66(6):861-867. [97] 董聪. 关于延拓Kantorovich法的讨论[J]. 土木工程学报, 1999, 32(6):72-74. DONG C. Discussion on the continuation of Kantorovich method[J]. China Civil Engineering Journal, 1999, 32(6):72-74 (in Chinese). [98] 袁驷. 对"关于延拓Kantorovich法的讨论"的答复[J]. 土木工程学报, 1999, 32(6):74. YUAN S. Reply to "Discussion on continuation of Kantorovich method"[J]. China Civil Engineering Journal, 1999, 32(6):74 (in Chinese). [99] SINGHATANADGID P, WETCHAYANON T. Vibration analysis of laminated plates with various boundary conditions using extended Kantorovich method[J]. Structural Engineering and Mechanics, 2014, 52(1):115-136. [100] EISENBERGER M, SHUFRIN I. The extended Kantorovich method for vibration analysis of plates[M]//Analysis and Design of Plated Structures. Amsterdam:Elsevier, 2007:192-218. [101] RAJABI K, HOSSEINI-HASHEMI S. Size-dependent free vibration analysis of first-order shear-deformable orthotropic nanoplates via the nonlocal strain gradient theory[J]. Materials Research Express, 2017, 4(7):075054. [102] CHANG D C, WANG G, WERELEY N M. A Generalized Kantorovich method and its application to free in-plane plate vibration problem[J]. Applicable Analysis, 2002, 80(3-4):493-523 [103] WANG G, WERELEY N M. Free in-plane vibration of rectangular plates[J]. AIAA Journal, 2002, 40(5):953-959. [104] ROSTAMI H, RAHBAR RANJI A, BAKHTIARI-NEJAD F. Free in-plane vibration analysis of rotating rectangular orthotropic cantilever plates[J]. International Journal of Mechanical Sciences, 2016, 115-116:438-456. [105] EISENBERGER M, ALEXANDROV A. Buckling loads of variable thickness thin isotropic plates[J]. Thin-Walled Structures, 2003, 41(9):871-889. [106] UNGBHAKORN V, SINGHATANADGID P. Buckling analysis of symmetrically laminated composite plates by the extended Kantorovich method[J]. Composite Structures, 2006, 73(1):120-128. [107] GRIMM T R, GERDEEN J C. Instability analysis of thin rectangular plates using the kantorovich method[J]. Journal of Applied Mechanics, 1975, 42(1):110-114. [108] LEE J M, KIM K C. Vibration analysis of rectangular isotropic thick plates using mindlin plate characteristic functions[J]. Journal of Sound and Vibration, 1995, 187(5):865-867. [109] LEE J M, CHUNG J H, CHUNG T Y. Free vibration analysis of symmetrically laminated composite rectangular plates[J]. Journal of Sound and Vibration, 1997, 199(1):71-85. [110] WANG J, LIU B, DU J K, et al. Approximate frequencies of rectangular quartz plates vibrating at thickness-shear modes with free edges[C]//2012 IEEE International Frequency Control Symposium Proceedings. Piscataway:IEEE Press, 2012:1-4. [111] SHUFRIN I, EISENBERGER M. Vibration of shear deformable plates with variable thickness-first-order and higher-order analyses[J]. Journal of Sound and Vibration, 2006, 290(1-2):465-489. [112] ROSTAMI H, BAKHTIARI-NEJAD F, RANJI A R. Vibration of the rotating rectangular orthotropic Mindlin plates with an arbitrary stagger angle[J]. Journal of Vibration and Control, 2019, 25(6):1194-1209. [113] RUOCCO E, MALLARDO V, MINUTOLO V, et al. Analytical solution for buckling of Mindlin plates subjected to arbitrary boundary conditions[J]. Applied Mathematical Modelling, 2017, 50:497-508. [114] SHUFRIN I, EISENBERGER M. Stability of variable thickness shear deformable plates-first order and high order analyses[J]. Thin-Walled Structures, 2005, 43(2):189-207. [115] KAPURIA S, KUMARI P. Extended kantorovich method for three-dimensional elasticity solution of laminated composite structures in cylindrical bending[J]. Journal of Applied Mechanics, 2011, 78(6):061004. [116] KAPURIA S, KUMARI P. Multiterm extended kantorovich method for three-dimensional elasticity solution of laminated plates[J]. Journal of Applied Mechanics, 2012, 79(6):061018. [117] TAHANI M, ANDAKHSHIDEH A. Interlaminar stresses in thick rectangular laminated plates with arbitrary laminations and boundary conditions under transverse loads[J]. Composite Structures, 2012, 94(5):1793-1804. [118] ANDAKHSHIDEH A, TAHANI M. Interlaminar stresses in general thick rectangular laminated plates under in-plane loads[J]. Composites Part B:Engineering, 2013, 47:58-69. [119] KAPURIA S, KUMARI P. Extended Kantorovich method for coupled piezoelasticity solution of piezolaminated plates showing edge effects[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2013, 469(2151):20120565. [120] KUMARI P, KAPURIA S, RAJAPAKSE R K N D. Three-dimensional extended Kantorovich solution for Levy-type rectangular laminated plates with edge effects[J]. Composite Structures, 2014, 107:167-176. [121] KUMARI P, BEHERA S. Three-dimensional free vibration analysis of levy-type laminated plates using multi-term extended Kantorovich method[J]. Composites Part B:Engineering, 2017, 116:224-238. [122] 林永静, 袁驷. 张量积形式的三维延拓Kantorovich法[J]. 工程力学, 2012, 29(5):8-12. LIN Y J, YUAN S. Three-dimensional extended kantorovich method of tensor product form[J]. Engineering Mechanics, 2012, 29(5):8-12 (in Chinese). [123] 林永静. 三维延拓Kantorovich法的迭代不收敛现象[J]. 温州职业技术学院学报, 2016, 16(3):47-50. LIN Y J. Iteration non-convergence phenomenon of three-dimensional extended kantorovich method[J]. Journal of Wenzhou Vocational & Technical College, 2016, 16(3):47-50 (in Chinese). [124] HASSAN AHMED HASSAN A, KURGAN N. Bending analysis of thin FGM skew plate resting on Winkler elastic foundation using multi-term extended Kantorovich method[J]. Engineering Science and Technology, an International Journal, 2020, 23(4):788-800. [125] MOUSAVI S M, TAHANI M. Analytical solution for bending of moderately thick radially functionally graded sector plates with general boundary conditions using multi-term extended Kantorovich method[J]. Composites Part B:Engineering, 2012, 43(3):1405-1416. [126] MOUSAVI S M, TAHANI M. Bending of moderately thick annular sector plates with variable thickness and general boundary conditions using extended knatorovich method[J]. Journal of Engineering Mechanics, 2015, 141(8):04015021. [127] SINGHATANADGID P, SINGHANART T. The Kantorovich method applied to bending, buckling, vibration, and 3D stress analyses of plates:A literature review[J]. Mechanics of Advanced Materials and Structures, 2019, 26(2):170-188. [128] MINDLIN R D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates[J]. Journal of Applied Mechanics, 1951, 18(1):31-38. [129] REISSNER E. The effect of transverse shear deformation on the bending of elastic plates[J]. Journal of Applied Mechanics, 1945, 12(2):A69-A77. [130] LIEW K M, XIANG Y, KITIPORNCHAI S. Transverse vibration of thick rectangular plates-I. Comprehensive sets of boundary conditions[J]. Computers & Structures, 1993, 49(1):1-29. |
[1] | ZHU Yingtong, DONG Chunxi, LIU Songyang, DONG Yangyang, ZHAO Guoqing. Passive localization using retransmitted TDOA measurements in the presence of sensor position errors [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(2): 706-716. |
[2] | SHI Xu-dong;WANG Xin-wei. Analysis of Buckling of Rectangular Plates Subjected to Non-uniformly Distributed In-plane Loadings [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(6): 1113-1116. |
[3] | Zheng Xiaoping;Wang Shangwen. DYNAMIC ANALYSIS OF AIRPORT PAVEMENT [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1990, 11(3): 146-155. |
[4] | Wang Xiuxi;Chen Feng;Wu Jie. BOUNDARY ELEMENT ANAIYSIS FOR TORSIONAL FREE VIBRATION OF REVOLUTION BODIES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1989, 10(3): 187-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341